CSCI 1101: Computer Science |

JEAN-BAPTISTE TRISTAN

Spring 2022

Welcome to CSCI 1101: Computer Science 1. Here’s some important information:

e The course webpage is:
https://bostoncollege.instructure.com/courses/1627647

e Social office hours take place in CS Lab 122 on Thursdays from 5:30-9:30pm and
Fridays from 3-6pm. Feel free to drop by and ask questions or simply work on the
homework!

e Everyone’s contact information is below. Please remember to contact your own
discussion section leader for technical questions (who may escalate to Julian if
needed) and to contact Professor Tristan for personal questions.

Jean-Baptiste Tristan | Instructor | tristanj@bc.edu
Julian Asilis Head TA asilisj@bc.edu
Ananya Barthakur TA barthaka@bc.edu
Joseph D’Alonzo TA dalonzoj@bc.edu
Jakob Weiss TA weissjy@bc.edu
Joanne (Jo) Lee TA leebpo@bc.edu
Thomas Flatley TA flatleyt@bc.edu
Chris Conyers TA conyerch@bc.edu
Brielle Donowho TA donowhob@bc.edu

e These notes were taken by Julian and have not been carefully proofread —
they’re sure to contain some typos and omissions, due to Julian.


https://bostoncollege.instructure.com/courses/1627647

CSCI 1101: Computer Science I Spring 2022

Contents
1 Wednesday, January 19 5
1.1 What is computer science? . . . . . . . . . ... .. )
1.2 History of computer science . . . ... ... .. . ... e 5
1.3 Course information . . ... ... ... ... .. ... 6
2 Friday, January 21 8
2.1 JupyterHub and primitive types. . . . . . . ... o 0oL 8
2.2 Debugging . . . . . . .. e 9
2.3 Variables. . . . . . .. 9
3 Monday, January 24 10
3.1 Terminal basics . . . . . . . . . . e e e 10
3.2 Running Python from the terminal . . . . ... ... ... ... ... .. .. 12
4 Wednesday, January 26 13
4.1 Functions . . . . . . . . e e e e 13
5 Friday, January 28 16
5.1 Announcements . . . . .. ... 16
5.2 Problem: sum of roots . . . ... ... ... ... ... 17
5.21 Tuples . . . o o o e 17
5.3 More operations . . . . . . ... e e e e 18
6 Monday, January 31 19
6.1 HWI postmortem . . ... ... ... .. 19
6.2 Booleans . . . . . . . ... 20
6.3 Conditional statements . . . . .. ... ... .. ... 22
7 Wednesday, February 2 23
7.1 Typechecking . ... .. .. . e 23
7.2 JupyterHub . . . .. 25
7.3 Problem: maximum of 3 integers . . .. ... ... ... .. ... 27
8 Friday, February 4 28
8.1 Problem: maximum of 3 integers (continued) . . . . ... ... ... .... 28
9 Monday, February 7 30
9.1 Tteration . . . . . . . . . e e e 31
9.2 Problem: multiple of 3 but not 11 . . . . .. ... ... ... ... ... 32
10 Wednesday, February 9 33
10.1 HW2 postmortem . . . . . . . . . .. e e 33
10.2 Arrays . . . oo e 34
10.3 For loops . . . . . . e 35
11 Friday, February 11 36
11.1 Problem: find X, y, 2. . . . . o o o v i 36
12 Monday, February 14 39
12.1 HW3 Postmortem . . . . . .. ... .. 39



CSCI 1101: Computer Science I

Spring 2022

13

14

15

16

17

18

19

20

21

22

23

24

25

12.2 Syntax . . . ..o
12.3 Errors . . . . . ...
12.4 Semantics . . . . . . .. e

Wednesday, February 16

13.1 Problem: pairwise sum . ... ............

Friday, February 18
14.1 Problem: pairwise sum (continued)

Monday, February 21

15.1 Analysis of algorithms. . . . ... ... ... ....

Wedneday, February 23

16.1 Analysis of algorithms, continued . . . . ... ...

Monday, February 28

17.1 Analysis of algorithms, continued . . . . ... ...

Monday, March 14

18.1 Midterm postmortem . . ... ... .........
18.2 Problem: 3Sum . . .. ... ... ...........
18.3 Leetcode . . . . . . . .. o
18.4 Search problems . ... ... .............
185 Sorting . . . . . ...

Wednesday, March 16

19.1 Insertionsort . .. .. ... . .. .. . ... ....

Friday, March 18

20.1 Mergesort. . . ... ... ... . ..

Monday, March 21

21.1 Data structures and data types . . ... ... ...

Wednesday, March 23

22.1 The stack data type . . ... ... ... ... ....

Friday, March 25

231 Recap . . . o o o
23.2 Object-oriented programming . ... ... ... ..

Monday, March 28

24.1 Classes, continued . . ... ..............

2421 List . ..o oo
24.2.2 Set . ..o
24.2.3 Dictionary . . ... ... ... ... ...

Wednesday, March 30

25.1 Dictionary, continued . ... ... ... ... ....

41

.............. 41

43

.............. 43

46

.............. 46

49

.............. 49

53

.............. 53

55

.............. 95
.............. 56
.............. 57
.............. 57
.............. 58

58

.............. 58

60

.............. 60

62

.............. 62

66

.............. 66

69

.............. 69
.............. 71

73

.............. 73
.............. 74
.............. 74
.............. 75
.............. 75

75



CSCI 1101: Computer Science I

Spring 2022

26 Friday, April 1
26.1 Problem: rings and rods

26.2 Semantics . . . . ... .o

27 Monday, April 4

27.1 Lists operations . .. ..............
27.2 Problem: sumofalist . ... .........

28 Wednesday, April 6
28.1 Functional programming

28 1.1 Map . . . v v v i
28.1.2 Filter . ... ... ... ... .. ...,
28.1.3 Reduce . . ... ... ... .......

29 Friday, April 8

29.1 Midterm practice. . . .. ... ... ... ...

30 Tuesday, April 19

30.1 Finalexam .. ... ...............
30.2 Modules . . . ..... ... .. .. .......
30.3 Packages . . . ... ... ... ...
30.4 Version control . . ... ... ..........

31 Monday, April 25

311 Pygame . .. ...... ... ... .. ....

32 Wednesday, April 27

32.1 Solitaire . . .. .. ... ... ..

32.1.1 The card object

33 Friday, April 29

33.1 Solitaire, continued . ... ... ... .....

Index

78

................. 79
................. 79

81

................. 81
................. 82

84

................. 84
................. 84
................. 86
................. 87

87

................. 87

90

................. 90
................. 90
................. 92
................. 92

92

................. 92

97

................. 97
................. 97

99

................. 99

103



CSCI 1101: Computer Science I Spring 2022

§1 Wednesday, January 19

Welcome to the Introduction to Computer Science. The plan today is mostly to talk
about the structure of the course — rather than diving headfirst into the course material —
and to talk about the spirit of computer science at a high level. In particular, we’ll try
to convince you that it’s useful to learn about computer science even if you don’t intend
to become a professional programmer.

§1.1 What is computer science?

First things first: what is the definition of computer science? Here’s what the dictionary
says:

The branch of knowledge concerned with the construction, programming,
operation, and use of computers.

Well, what’s a computer? Let’s use the dictionary again:
A device or machine for performing or facilitating calculation.

It’s important to note that there’s no mention of electronics here! So even something
like an abacus is a computer under this definition. There’s another dictionary definition
of a computer though:

An electronic device [...] capable of [...] processing [...] in accordance with
vartable procedural instructions.

The latter end of that definition seems to be referring to an algorithm, perhaps the
single most important object in computer science. Let’s see a definition:

A procedure or set of rules used in calculation and problem-solving; (in later
use spec.) a precisely defined set of mathematical or logical operations for the
performance of a particular task.

The important (and difficult!) part is that algorithms are a very precise set of
instructions. Defining exactly what it means to be ‘precise’ or ‘mathematical’ is no small
feat, though. Formalizing this entire setup (computer, algorithm, etc.) is actually one of
the most important achievements of the legendary Alan Turing.

§1.2 History of computer science

One of the earliest sets of instructions for performing a computation comes from the
Babylonian Empire, circa 1600 B.C. The algorithm (in more modern language) served to
calculate certain dimension of a cistern. It was really a flushed out example — rather than
an abstract algorithm in the modern sense — but it’s thought of as one of the earliest
examples of computational thinking.

In ancient Greece (circa 300 BC), Euclid developed an algorithm to compute the
greatest common divisor of two numbers. This was a fairly flushed out example, and an
important point is that it didn’t run in a fixed amount of steps. The number of steps
required in the algorithm instead depended upon the size of the inputs fed to it. We’ll
touch on this idea later in the course.

In the 3rd century, Chinese mathematician Liu Hui developed what is currently known
as Gaussian elimination (long before Gauss!). Furthermore, he even proved correctness



CSCI 1101: Computer Science I Spring 2022

of the algorithm (i.e., that the algorithm’s instructions conclude with the answer that
you would like it to, when used on any input).

In the 9th century, Al-Khwarizmi was part of the Islamic Golden Age, which united
ideas from Chinese and Indian number theory in order to develop the number system we
currently use. Notably, the word algorithm comes from Al-Khwarizmi himself.

Remark 1.1. The way data is represented is really important when performing computation.
For instance, you learned how to perform addition when you were 5 or 6 years old using
the Arabic numerals, and it wasn’t too hard. What if you’d had to learn addition using
the Roman numeral system instead? What’s MCCXXXIV + MMMMCCCXXI? In Arabic
numerals, that’s just 1234 + 4321 = 5555!

In the 19th century, Ada Lovelace produced perhaps the first program, for computing
Bernoulli numbers. She is one of the great pioneers of computer science, and the
programming language Ada bears her name.

In the 20th century, Alan Turing started contemporary computer science by formally
defining computers and algorithms. He also led the team that decoded the Enigma code
in order to locate Axis U-boats in the second world war. In 1946, the first programmable
electronic computer was created. One last historical note: the first computer bug was a
literal bug that got in the hardware of these early computers (hence the name).

What’s really the point here?

e Computer science is about much more than programming electronic devices.
e It will improve your problem-solving skills.
— Design, analysis, and implementation of algorithms to solve problems
e It will introduce you to computational thinking.
— Decompose, generalize, abstract, organize
e [t will make you a more rigorous and logical thinker.
One last example to really underscore that computers are not (just) electronic devices.
One way to solve a famous problem knows as the Traveling Salesman problem is by using

slime mold! You can literally place food in a petri dish and the slime mold will connect
in the shortest path possible.

§1.3 Course information

Here are some of the things you’ll learn in the course.

Problem solving by designing and analyzing algorithms

Representing and manipulating data
e Programming an electronic computer

— Using the Python programming language

Operating an electronic computer

— Using a terminal on a Linux instance in the cloud
How will you learn all of this?

e Lectures

— Usually, no slides, live programming and explanations



CSCI 1101: Computer Science I Spring 2022

— Not mandatory but highly recommended!
— Lecture notes posted (and lecture hopefully recorded)

Free textbook: details on Canvas

Discussions

— ~10% of final grade, for participation (both mandatory attendance and effort)
— Make sure you know who your discussion leader is!

— No swapping discussion sections, sorry

9 homework assignments

~35% of final grade

Released on Fridays and due the following Friday at 7pm (via Canvas)

No homework on midterm weeks

-20% for late homework up to 24 hrs past the deadline

2 midterms

— ~30% of final grade, requires a computer

— Midterm 1: March 4, Midterm 2: April 20

1 final project
— ~25% of final grade; structure subject to change
— Programming assignment with a partner, project assigned to you

— 1-2 weeks to complete

There are about 140 students taking this course, so we need to be careful about how
you should get help and interact with course staff. Please follow the protocol below.

e Step 1: Social office hours:
— Thursday from 5:30 pm to 9:30 pm, CS Lab 122
— Friday from 3:00 pm to 6:00 pm, CS Lab 122

e Step 2: Email your own discussion leader. The email may be forwarded to the
head TA if they can’t help you.

e Step 3: Ask for one on one help with your discussion leader. Again, the email may
be forwarded to the head TA.

e Personal matter? Email Professor Jean-Baptiste Tristan.

One last note: if you're going to miss lecture, no need to email anyone. We encourage
you to come, but we certainly understand that issues may come up — if you can’t come,
no need to notify anyone.

Final thoughts: please read the syllabus. There’s lots of important information,
and we were able to cover most, but not all, of it today. Also, there are no discussion
sections or office hours this week. Once again, welcome to the course and we’ll see you
on Friday!



CSCI 1101: Computer Science I Spring 2022

82 Friday, January 21

§2.1 JupyterHub and primitive types

The very first homework assignment that you’ll be completing will be hosted on Jupyter
notebooks, which is a flexible platform for writing code, running code, and writing
text /math. In particular, a Jupyter notebook is built of different cells, that can contain
Python code or markdown for writing text.

Within a notebook, you can create new cells, delete existing cells, run cells filled with
code and see the output, and write text between cells of code to describe your thought
process.

So, for instance, you can have a cell in a notebook that looks like this:

2 + 3

This is an example of an expression in Python, and if you run that cell, it’ll output
5. Awesome! You can also have a cell like this:

2+ 2 %3

And this evaluates to 8, as you’d expect. But it’s important to note that there was a
choice made here — that expression could have instead been evaluated as (2 + 2) x 3 =
12. The fact that it didn’t comes down to precedence rules; Python has decided that
multiplication should be evaluated before addition, which agrees with the way we usually
evaluate expressions as humans.

An important fact to note is that every expression in Python has a type, which is
roughly the ‘species’ of the expression, or the kind of thing that it is. Important types
to start off with are the primitive types, which are some of the most basic, built-in
types in Python that underlie more sophisticated ideas. For instance, int is the type of
all the integers {...,-2,-1,0, 1,2, ...} and float is the type that (roughly speaking)
contains the continuous real numbers, like 0.26, 1/3, 7, etc.'

Another import type is str , which contains the strings in pythons, i.e., collections
of characters like 'Hello!' or 'This is a string :)' . There are some nice built-in
operations on strings, like addition between strings or multiplication of a string by an
integer. Let’s see that in action:

'hello' + ' bob'

will evaluate to the string 'hello bob' , and

'hello' * 3

will evaluate to the string 'hellohellohello' . There are tons of built-in operations on
these primitive types, and we’re simply not going to be able to cover all of them. One
important skill that we want to instill in you over the course of the class is the ability

!Strictly speaking, computers can’t work with all the real numbers precisely, because computers are
fundamentally discrete. So in practice it works with mere approximations of these numbers, which
can sometimes produce strange behavior. The takeaway is just to be a bit careful anytime you’re
working with floats, keeping in mind that they’re just approximations.



CSCI 1101: Computer Science I Spring 2022

and eagerness to Google your programming questions. It’s something that even the pros
rely on, and it can be one of the fastest ways to answer your questions.

§2.2 Debugging

Let’s talk a bit about debugging, which is one of the most important skills in program-
ming. Let’s work with an example.

2 +

If we run this in a cell, we’ll get an error that reads SyntaxError: invalid syntax .
Here’s the first, golden rule of debugging: read the error messages. They’re not
always useful, but they’ll often give you most (or all) of the information that you need to
fix the problem.

In this case, we got a SyntaxError , which is roughly the programming analogue of
making a grammatical mistake. The error will even point you to the line where the
mistake was made, and we’d be able to see that we forgot to provide one of the arguments
to +. Let’s look at another example.

'hello' *%* 5

In this case, we would get an error message of a TypeError , which tells us that one (or
more) of our inputs in an expression has the wrong type. In this case, we would realize
that we’re not allowed to exponentiate a string and a number (what would it even mean
to multiply 'hello' by itself 5 times?). Let’s keep going.

4/ 0

This gives us a ZeroDivisionError , which tells us exactly what we need to know: we
tried to divide by 0, which isn’t even legal mathematically (much less computationally).

§2.3 Variables

The variable is the bread and butter of programmers, and serves as shorthand for the
expressions. Let’s look at how you bind a variable, i.e., assign an expression to it.

x = 42

This is a line of code that assigns the value 42 to the variable x . Unlike in mathematics,
it is not declaring that x equals 42. After all, x doesn’t even exist before the line of
code is run! But from here on out, we can write code with the variable x in place of 42 .
To drive the point home, let’s look at another (perhaps somewhat surprising) example.

x =x + 25

This code will run happily! x will have the value 67 after the line of code is run, and this
underscores that = plays the role of an action in Python, not a passive test of equality.



CSCI 1101: Computer Science I Spring 2022

b=a+ 23

What if we run the code above? Well, we’ve never defined a , so Python will yell about
a NameError , which lets us know that it doesn’t know what a is. (Good thing we read
the error message!)

What if we want Python to display information to us? This is achieved using print
statements, equipped with an argument of what we want to print. For instance,

print(x)

will display the value 67 on our screen, as that’s the value bound to x . Similarly, we
can write

print('the value of x is:', x)

which displays the value of x is: 67. (Notice that it added a blank space between
the colon and 67.) An important note here is that print statements can be extremely
useful for debugging! Riddling your code with print statements lets you know exactly
what all the variables are bound to when the code fails, at which step the code fails, etc.

Now here’s a bit of a puzzle: what if we wanted our code to print "hello", rather than
just hello? Running print("hello") will achieve the latter, so it’s not what we want.
It turns out that this can be achieved by combining single quotes and double quotes in
Python. If we run

print('"hello""')

then we’ll indeed get "hello", as print only strips the outer layer of single quotes.

That should be everything you need for the first homework assignment. In discussion
section next week, your TAs will help you familiarize yourself with Jupyter notebooks
and the process of transferring homework between Canvas and Jupyter Hub. Good luck
on the homework!

83 Monday, January 24

The goal for today is to learn how to use the terminal; it may not be the most exciting
topic we’ll cover in the course, but it’s important for developing skill in using your own
computer in advanced ways and for using computers remotely.

§3.1 Terminal basics

To ease the into idea of using a terminal, recall that last time we talked about using
JupyterHub for the first homework. JupyterHub is actually just an interface for accessing
a virtual machine in a far-off place, like a warehouse with lots of powerful computers.”
Furthermore, JupyterHub has its own terminal, accessible from the home page. At a high

2Informally, a virtual machine is like a sliver of one of those powerful computers, that you share with
many other users.

10



CSCI 1101: Computer Science I Spring 2022

level, the terminal is just a powerful interface for interacting with a computer. The
bread and butter of terminal usage lies in its basic commands, some of which we’ll cover
now (and which we’ll expect you to know!).

$ echo 'hello'

This will have the effect of simply printing hello back to us. Nothing too fancy yet. How
would we learn more about a terminal command (e.g., about its optional arguments)?
Using man .

$ man echo

This will display the manual for echo (hence the name man ), including lots of information
about arguments for echo, etc. Now we have lots of junk on our screen, and we might
want to clean things up using the clear command.

$ clear

Now our terminal is clean — nice. In order to get information about the machine that
we’re using, we can use the uname command.

$ uname

In this case, the terminal will tell us that our machine is using Linux, which can be useful
to know.

Now let’s talk about commands for organizing data stored in the computer. In order to
know where the terminal is currently set up within the file system (it’s always somewhere!),
you can use the pwd command.

$ pwd

Short for ‘print working directory’, pwd will tell us the directory (or folder) where the
terminal is currently working. In order to move the working directory, you can use the
cd command, short for ‘change directory.’

$ cd ~

This will take the terminal to your home directory, since you fed it the argument.
You could have written cd / to navigate to the root directory instead. (How can you
learn more about cd ? Using man!). In order to see the files contained in your current
directory, use the 1s command, i.e.,

$ 1s

If you feed the optional argument -1 (i.e., write $ 1s -1 ), then you’ll get even more
information about the contents of your current working directory (cwd). You can even

11



CSCI 1101: Computer Science I Spring 2022

make a new directory within your cwd using the mkdir command and a name argument,
ie.,

$ mkdir my_folder

will have the effect of creating a new folder (or directory) in your cwd named my_folder.
To remove that directory, you would use rmdir .

$ rmdir my_folder

In order to create a file that doesn’t exist, say a new text file, you would use touch. So

$ touch hello.txt

will create the file hello.txt within your cwd.” You can open a file using open along
with the name of the file, and you can see just the first few or last few lines of the file
using head or tail, respectively. Two last tips for efficiency on the terminal:

1. You can cycle through your previous commands on the terminal using the up arrow;
this can save you lots of typing when used correctly!

2. The terminal will auto-complete file and directory names as much as it can when
you press tab.
§3.2 Running Python from the terminal

Now let’s move on to something a little bit fancier — let’s say we’ve written a Python
program in a file called first.py. Maybe it looks like this:

x = 42

x + 6

We can run this from the terminal using the command $ python first.py . But nothing
happens — why? It’s because Python did exactly what we asked; it completed its
instructions silently! We can fix this, and ask Python to show us some output, by
updating first.py as so:

x = 42
print(x + 6)

Now when we run $ python first.py, we indeed see the output of 48. That’s an
improvement, but it’d be nice to have something more dynamic, perhaps where we can
feed the program a number of our choosing at runtime. So we’ll update first.py again,
using the input function to request arguments from the user.

3If hello.txt already exists, then it will just change the ‘date last modified’ of the file to the current
time. That helps explain why it’s called touch (in fact, using touch on a file that doesn’t already
exist is kind of a degenerate case, even though it may be the most common use).

12



CSCI 1101: Computer Science I Spring 2022

x = input('Give me a number:')

print('Your new number is:', x + 1)

Now when we run this, Python actually asks us for input. We can feed it an integer
(say 42 again) and look forward to seeing it be incremented by one. But this now gives
us a TypeError message! Looking more closely, we can see that Python can’t compute
x + 1 because x is a string.

When Python reads user input via input() , it automatically casts it as a str type;
as humans, we know that we’re going to feed the program in integer, but the program
itself doesn’t know that. So we need to turn x into an integer before incrementing it.
This leaves us with

x = input('Give me a number:')

int (x)

X

print('Your new number is:', x + 1)

which will indeed work!

84 Wednesday, January 26

§4.1 Functions

The goal today is to learn about functions in Python and about approaching algorithmic
problems more generally. We’ll be running with an example today and for the next
couple lectures, concerning solutions of quadratic equations. In particular, recall that a
quadratic equation is an equation of the form

az? +bx+c=0,

where a,b, ¢ are some fixed numbers (with a # 0) and x is an unknown variable. So a
particular quadratic equation might look something like 322 + 22 + 1 = 0. The name of
the game is to find the value(s) of = that make this equation hold true, known as roots.

From a mathematical perspective, this problem has been resolved using the quadratic
formula, which we’ll discuss in more detail shortly. From a computer science perspective,
however, there’s a bit more going on. The precise problem setup is that there are 3
inputs — the numbers a, b, ¢ (with a # 0) — and the desired output is a pair of numbers
x1,xo such that

az? +bxy +c=0,

azs +bxg +c=0.
Now the goal is to find a generic procedure that works to send any valid input values
a, b, c to (correct) output values x1,z2. As we’ve discussed previously, this kind of generic

procedure for computing output from input is known as an algorithm.
Now back to the quadratic formula; here’s the precise mathematical statement.

13



CSCI 1101: Computer Science I Spring 2022

\
Lemma 4.1 (Quadratic formula)

Let f(z) = ax? + bz + ¢ be a quadratic equation (i.e., a # 0). Then the (complex)
roots of f are exactly

-b+ Vb2 -4ac . -b- Vb2 -4ac
= N 2:— .

2a ’ 2a
\ 4

z1

A crucial skill for any computer scientist, which is a bit hard to teach, is how to turn
a mathematical result (like the quadratic formula) into computer code. So let’s try to
start by at least computing the roots of a particular quadratic equation, say z? + 4z + 2.
We might start writing code as follows.

a =1
b=
c =2

We have an idea of how to perform the addition, multiplication, and division necessary
to compute the result of the quadratic formula, but how are we going to calculate the
square root? After all, there’s no built-in square root character in Python like + for
addition or * for multiplication.

This is where we’ll turn to Python’s libraries, which are collections of functions that
other people have written for us. In this case, we’ll use the math library, which has the
function math.sqrt() that we’re looking for.” Now we can write our code as follows.

x1
X2

(-b + math.sqrt(b**2 - 4 x a * ¢c)) / (2 * a)
(-b - math.sqrt(b**2 - 4 x a * ¢c)) / (2 * a)

Awesome! Now what if we want the roots of another quadratic equation? We’ll need
to update the values of a, b, and ¢ and run all these lines of code again. That’s not
terribly inconvenient in this case, but it would be really inconvenient for larger suites of
code, and we can do better. The technique for packaging many lines of code into a single
name in Python is the function. Before trying to write a function that solves quadratic
equations, let’s get our feet wet with simple functions.

def my_func(x):
x=x+1

print('Value of x:', x)

my func(5)

In the first three lines, we're defining our own function my_func with the single
parameter x that increments x by 1 and prints it. In the fifth line, we're actually using
my_func with the argument 5, which will result in Python printing Value of x: 6.
Simple enough. Now here’s a bit of a puzzle — what if we ran the following code?

4If you were to forget the name of a library or a function within a library (and everybody does),
remember to use Google! Even the pros do it.

14



CSCI 1101: Computer Science I Spring 2022

x = 42
def my_func(x):

x =x + 1

print('Value of x:', x)
my func(5)

We’ll actually still get Python printing Value of x: 6. So the first line, in which we wrote
x = 42, didn’t affect the computation of my_func(5) at alll The fact that my_func
doesn’t care about the value of x outside of its own argument/definition has to do with
the idea of scope. In particular, the value of x on line 3 only comes from the argument
to my_func , not from anywhere else.

Now what if we were to run my_func(4+5) ? This would be evaluate as my_func(9) ,
due to the call by value nature of Python. In particular, Python first evaluates 4+5
and then sends the result to my_func . That’s how most programming languages do

things, but not all of them!®
Okay, back to the quadratic equation. Let’s try to write a solver for it now that we’re
warmed up.

def solver(a, b, c):
x1 = (-b + math.sqrt(b**2 - 4 *x a * c)) / (2 * a)
x2 = (-b - math.sqrt(b**2 - 4 * a * c)) / (2 * a)
print ('First solution:', x1)

print('Second solution:', x2)

That works! If we run

solver(l, 4, 2)

then we’ll get the roots of 22 +4x +2 that we saw earlier. If we want the roots of 2+ 5z +2,
then we only need to change a single character.

solver(1l, 5, 2)

We’ve made a great leap forward from just writing code in cells (i.e., without functions),
but there are still improvements to be made. The code is currently a little bit hard to read
and has redundant computation (e.g., we're computing the square root of b2 - 4xaxc
two times). Let’s try to clean this up a bit, with the goal of making it faster, easier to
read, and less prone to errors.

def solver(a, b, c):
sr = math.sqrt(b**2 - 4 * a * c)
x1 = (-b + sr) / (2 * a)
x2 (-b - sr) / (2 * a)

SIf this is confusing, don’t worry. The idea is really just that Python does what you’d expect it to do in
this situation, and some other languages do stranger, fancier things.

15



CSCI 1101: Computer Science I Spring 2022

print('First solution:', x1)
print('Second solution:', x2)

This code still isn’t perfect (we’ll see why over the next several lectures), but it’s faster
and cleaner than the previous version of solver() . Now let’s conclude with a bit of
debugging. What if we were to run:

solver(l, 2)

Then Python will give us an error message:

TypeError: solver() missing 1 required position argument: ‘c’.
That’s pretty descriptive; we now know that we need to feed solver its third argument.
pretty ptive; g

What if we were instead to go overboard with arguments?

solver(1l, 2, 3, 4)

We get another error message:
TypeError: solver() takes 3 positional arguments but 4 were given.

Again, that’s pretty informative and helps us figure out what went wrong. Now let’s stop
messing around and really use solver() as intended.

solver(l, 4, 2)

This time we’ve made sure to give solver() the correct number of arguments of the
correct type. But we still get an error! Python will complain of:

ValueError: math domain error.

In this case, what’s happened is that math.sqrt() is trying to take the square root of a

negative number! We should have been more clever in writing solver() and made sure
that it didn’t accept arguments causing this kind of problem. We’ll see how to approach
these kinds of issues in the coming lectures.

§5 Friday, January 28

§5.1 Announcements

We'll keep talking about functions today, and you should be ready to start tackling
Homework 2 by the end of the lecture. Speaking of the homework, we gave a quick look
at some of the Homework 1 submissions yesterday, and it looks like the following thing is
happening: many of you have already done some programming before, yet you answer a
homework problem incorrectly and (in addition) use unnecessarily advanced techniques.

So, please, read the questions carefully before writing your solutions and be cautious
about using sophisticated techniques when you really don’t need to.

One more thing to mention: there’s a collegiate programming contest called the ICPC,
which BC used to perform very well in but which we don’t seem to participate in anymore.

16



1

CSCI 1101: Computer Science I Spring 2022

Professor Tristan is going to try to restart BC’s participation in this competition, so
please let him know if you're interested. To sweeten the deal, keep in mind that the kind
of algorithmic thinking needed for these competitions is great preparation for interviews
at places like Google, quantitative finance companies, etc. (As we mentioned earlier,
algorithmic thinking is a very difficult and valuable skill to develop!)

§5.2 Problem: sum of roots

Last time we wrote functions for finding roots of quadratic equations. Today, we’ll change
things up a bit and think about writing a function that returns the sum of a quadratic
equation’s roots. That is,

T =1+ X9;
a,b,c— x such that a,x%+bx1 +c=0;

azr3 +bry+c=0.

Now, there are a couple of ways to approach this problem. Perhaps the most obvious
is to use our function solver() from last time in order to compute x1 and x5, and then
return their sum. Breaking this down further, there are two ways to implement this idea:

1. Copy and paste the body of our solver() function into a new function that prints
x1 + 22 instead of x1 and x9 separately.

2. Write a function that uses the output of solver() in order to compute x = x1 + 2.

Path (2) is far, far better than path (1). If there is a golden rule of programming,
it is to not copy and paste code. When you copy and paste code 5 times, then any
bug you find needs to be fixed 5 times, any style change/clean-up you make needs to
be implemented 5 times, any efficiency speed-up needs to be implemented 5 times, etc.
Also, copy-pasted code is much harder to read than modular code.

Now, in order to implement idea (2), we need to change solver() so that it actually
returns its output, rather than just printing it. This is achieved using the return
keyword. Our new solver() will be as follows.

def solver(a, b, c):
sr = math.sqrt(b**2 - 4 * a * c)
x1 = (-b + sr) / (2 * a)
x2 (-b - sr) / (2 * a)

return x1, x2

§5.2.1 Tuples

Something a bit subtle is happening in line 5; solver() is returning two values at once by
using the tuple type. In contrast to the primitive types that we have seen previously,

the tuple is a composite type, meaning it’s a bit more complicated and built from the

simpler primitive types. At a high level, the tuple is simply a type for placing several
items in order. For instance,

x = (2, 3)

17



CSCI 1101: Computer Science I Spring 2022

binds x to the tuple with the int 2 in the first position and 3 in the second position.
If you’ve seen vectors before, you can think of tuples like that.

In fact, tuples are one kind of a data structure, which is a format for storing and
manipulating data. If this is a bit confusing, don’t worry — we’ll encounter several more
data structures over the course of the class. In fact, data structures are probably the
second most important idea in computer science, after algorithms!

Now we need to familiarize ourselves with tuples a bit. Let’s say we have x = (2, 3)
as before — how can we access the entries 2 and 3 from the variable x? This is achieved
by indexing into x, via the following syntax.

two = x[0]
three = x[1]

By running this code, the variable two will indeed take the value 2 (corresponding the
leftmost entry of x), while three will take the value 3 (corresponding to the rightmost
entry of x). An important observation here is that 0-indexing is used when accessing
the entries of x. That is, the leftmost entry of x has the index 0, while the next one has
the index 1, and so on. Simply put, we start off counting from 0 rather than 1.

This is just a convention in computer science. Python could have chosen to start
indexing tuples by starting with the number 43, and that would be perfectly legal (though
very confusing for humans). For whatever reason, computer scientists often like to start
counting at 0. (Kind of like how in Europe, the ground floor of a building is the Oth floor,
rather than the 1st.)

Another way to grab the entries of a tuple is via pattern matching, as follows.

two, three = x

This will again have the effect of binding two to 2 and three to 3. So now that we've
learned about tuples, we can write the outer function that uses solver() and adds its
output (in order to solve our original problem about sums of roots). We can write:

def solver_sum(a, b, c):
x1, x2 = solver(a, b, c)
print(x1 + x2)

Isn’t that nice? We solved our new problem with two lines of code! This is just an
example of the power of writing modular code, i.e., code that is split up into several
functions that can be reused, rather than huge blocks of copy-pasted code.

§5.3 More operations

Now we're going to learn about more of Python’s powers. We just learned about indexing
into tuples, which are entries of data in order. That doesn’t sound so different from
strings (which are just characters in order), so maybe we can index into them as well.
Let’s try.

s = 'Hello, I am Sam!'
s[4]

18



CSCI 1101: Computer Science I Spring 2022

This indeed returns 'o' — nice! What if we want all the values between two indices of
the string? We can do so via slicing, i.e.,

s[3:12]

This returns 'o, I am ', the values between the 3rd and 12th indices. To get the string’s
entries from the 3rd index onward, you can write s[3:] , and to get the string’s entries
up until the 7th entry, you can write s[:7] .

Now let’s move from strings to floats; what if we want to round a float to an int ?
We can use the built-in round() function, that rounds a float to the nearest int . For
instance,

round (4.8)

returns 5, while round(4.2) returns 4. What if we want to round to the next-lowest
integer or next-highest integer, rather than the closest? Then we’ll need to use the math
package, with the functions math.floor() or math.ceil() respectively. For instance,

import math
math.ceil(4.1)

comes out to 5.

86 Monday, January 31

§6.1 HW1 postmortem

Quick comment on the homework due last Friday: the goal was to compute the following
value, as a function of T" and v:

Towe = 35.74+0.625 - T — 35.75 - w16 + 0.4275 . T - %16,

Most of you wrote something like this:

T = 20
v = 15
35.74 + 0.625 * T - 35.75 * v **x 0.16 + 0.4275 * T * v ** 0.16

That will produce the correct value, but it actually has an imperfection. Namely, the
value v**0.16 will be computed twice by Python in the third line. Rather than having
Python repeat identical computation, and waste time & energy, we can do better by
introducing a variable that stores the value of v*x0.16 .

The intended solution was as follows.

T = 20

v = 15

tmp = v**0.16

35.74 + 0.625 * T - 35.75 * tmp + 0.4275 * T * tmp

19



CSCI 1101: Computer Science I Spring 2022

In particular, the variable tmp (for temporary) introduced in the third line saves Python
from repeating computation in line 4.

One more note: Python evaluates code in a line-by-line manner, and it doesn’t evaluate
the body of a function until the function is actually called with arguments. For instance,
consider the following code.

x = 10
x + 42

def test(x):
print('hello')

return x + 1

test (y)

What will this output? Well, lines 1 and 2 are run in that order, so x = 10 and
y = 52. Then test(x) is defined but its body is not run (since we haven’t called it

with any input yet!). In line 8, finally, we call test(y) . Since y is bound to 52, that

comes out to test(52) .
So this code will print 'hello' and line 8 will return the value 53. In particular,
that’s exactly the same as if we had replaced lines 1 and 2 with the single line y = 52.

The body of test() only cares about the x that it is given as an argument.

§6.2 Booleans

The primary goal for today is to introduce a new type along with its primary function-
alities. In particular, we will introduce the type bool of Boolean values (named after
mathematician George Boole). The type bool has only 2 values: True and False .
They’re really meant to express the usual notions of truthhood and falsehood within
Python, and to allow us to branch our computation based on whether something is true
(i.e., compute f£(x) if P(x) is true and g(x) otherwise).

Let’s jump into some examples, demonstrating how we can get bool s from types we
already know. For instance,

2 <3

will evaluate to True , just as

3 <=3

will evaluate to True . On the other hand,

2 >3

and

20



CSCI 1101: Computer Science I Spring 2022

3 <=4

will both evaluate to False. So < and <= correspond to testing strict and weak
inequalities of numbers.

To test for equality, among numbers and various other types, you can use ==. (Recall
that = is already taken for variable assignment, rather than testing equality!). So,

3==

and

'hello' == 'goodbye'

will evaluate to False , whereas

evaluates to True .

So that’s how we can get bool s from familiar types. But we can also manipulate
bool s themselves to get other bool s. For instance, not applied to a single Boolean x
will evaluate to False if x is True and to True if x is False.’

So, combining what we’ve learned,

not True == False

will itself evaluate to True ! Two keywords for combining two Boolean expressions (rather
than a single one) are and and or . Once again, they’re built so as to agree with their
plain English names. So,

True and True

comes out to True , while

True and False

comes out to False . On the other hand, or of several expressions will evaluate to True
as long as even a single one of the argument expressions is True . For instance,

True or False

is True , and

True or True

is True as well.

5Nothing too fancy here; these Python keywords are designed so as to agree with plain English.

21



CSCI 1101: Computer Science I Spring 2022

§6.3 Conditional statements

Now let’s get to the most important use of bool s: branching computation. In particular,
you often want your program to compute A(x) if P(X) is true and B(x) if P(x) is
false.

The syntax for this lies in the keywords if and else . Let’s learn through example.

if x ==
print('x is 3 and I executed the top branch!')
else:

print('x is not 3 and I executed the bottom branch!')

The rule here is the following: if x == 3 evaluates to True, then running this code
will run the indented code immediately after if and skip the code after else. If
x == 3 evaluates to False, then running the code will skip the indented code after
if and run the code after else. So, in this case, we’ll see this message printed:
'x is 3 and I executed the top branch!' . If we had set x = 4 on line 1, then running
this code would result in (only) the other message being printed.
You can also branch on more than one condition by using the elif keyword, which is
short for else if . So,

if x > 1:

print ('Took first branch')
elif x > 2:

print ('Took second branch')
else:

print ('Took third branch')

will send 1.5 to the first branch (and nowhere else), 2.5 also to the first branch (and
nowhere else), and 0.5 to the third branch (and nowhere else). In fact, no numerical
value of x will reach the second branch — can you see why?

Now let’s rewind to when we were writing our solver() function for finding quadratic
roots. Recall that it looked like this.

def solver(a, b, c):
sr = math.sqrt(b**2 - 4 * a * c)
x1 = (-b + sr) / (2 * a)
x2 = (-b - sr) / (2 * a)
print ('First solution:', x1)

print('Second solution:', x2)

One problem we ran into earlier is that math.sqrt() doesn’t accept negative input,
which can sometimes happen in line 2 if we allow for any inputs a, b, c. We also want
to make sure, as a basic first step, that a # 0 (otherwise, lines 3 and 4 really don’t make
sense ...). We can improve this function a bit using our new knowledge of conditional
statements.

22



10

11

12

13

CSCI 1101: Computer Science I Spring 2022

def solver(a, b, c):
if a ==
print('a should be 0!')
return
tmp = b**2 - 4 % a *x ¢
if tmp < O:

print('No real solutions')

return
sr = math.sqrt(b**2 - 4 * a * c)
x1 = (-b + sr) / (2 * a)
x2 = (-b - sr) / (2 * a)
print('First solution:', x1)
print('Second solution:', x2)

Now solver will return nothing and print a disclaimer when it gets problematic input.
Nice. Another problem we had was that solver() accepts input from types other than
float and int.

We can get the type an expression using type() and test that it equals int or float
using == . For instance,

type(3) == int

comes out to True , while

type('hello') == float

comes out to False . Next time, we’ll see how to use this kind of technique to improve
solver() even further by having it only accept numbers.

§7 Wednesday, February 2

A quick errata from last time: we were talking about the implementation of ordering on
strings, e.g., how

'be' < 'be curious'

evaluates to True . We thought that this tested whether the left hand side is a substring
of the right hand side, but that’s actually not true. < instead compares strings under
the dictionary ordering (i.e., the ordering used to list words in the dictionary, or to list
your last names on Canvas).

§7.1 Type checking

Last time we started talking about the need to check the types of arguments given to
the functions that we write. For instance, to make sure that solver() only takes int s
and float s as input, we can write a helper function ct() (for check type).

23



10

11

12

13

10

11

12

13

14

15

16

CSCI 1101: Computer Science I Spring 2022

def ct(x):
return type(x) == int or type(x) == float

So ct() returns True if x has the right type for solver() and False otherwise.
Let’s remind ourselves of the version of solver() that we were looking at last time, and
think about how to use our new helper function ct() .

def solver(a, b, c):

if a ==
print('a should be 0!')
return

tmp = b**2 - 4 x a * c

if tmp < O:
print('No real solutions')
return

sr = math.sqrt(b**2 - 4 * a * c)

x1 = (-b + sr) / (2 * a)
x2 = (-b - sr) / (2 * a)
print('First solution:', x1)
print('Second solution:', x2)

We’re currently checking to make sure a does not equal zero, and that the polynomial
indeed has real roots (rather than complex roots), which is great. It would be even better
to kick things off by checking the types of a, b, and c. Making use of ct() , our new

solver() will look as so:

def solver(a, b, c):
if not (ct(a) and ct(b) and ct(c)):
print('One argument has the wrong type!')

return

if a ==
print('a should be 0!')
return

tmp = b**2 - 4 *x a * ¢

if tmp < O:

print('No real solutions')
return

sr = math.sqrt(b**2 - 4 * a * c)

x1 = (-b + sr) / (2 * a)
x2 = (-b - sr) / (2 * a)
print('First solution:', x1)
print('Second solution:', x2)

And indeed we can check that solver(i, 2, 'hello') returns nothing and prints our
new error message.

24



10

11

12

13

CSCI 1101: Computer Science I Spring 2022

Remark 7.1. We're not doing anything terribly fancy, but note that this version of
solver () uses all the techniques we’ve learned about: functions, conditional statements,
and type checking!

Now we’ve made sure that solver() doesn’t return anything for illegal inputs, but it
still runs perfectly well, which isn’t ideal. If we were in a larger project with thousands of
lines of code, and solver() were being used somewhere deep in a complicated process,
then our current setup would have some serious drawbacks:

e solver() can feed incorrect output (i.e., nothing) to later functions that happily
make use of it.

e We won’t know the line number or even the function where we used arguments of
the wrong type.

e Our entire program (in which solver() is just one tiny piece) will still run, even
when we know there’s a mistake.

The way we can fix all these issues is by raising an error, which is Python’s way of
halting a program, spitting out an error message, and pointing the user to the function
and line number where the error occurred. (All of these functionalities are extremely
useful!). We can rewrite solver() to raise errors like so.

def solver(a, b, c):
if not (ct(a) and ct(b) and ct(c)):
raise ValueError('One argument has the wrong type!')
if a ==
raise ValueError('a should be O!')
tmp = b**2 - 4 *x a * c
if tmp < O:

raise ValueError('No real solutions')

sr = math.sqrt(b**2 - 4 * a * c)
x1 = (-b + sr) / (2 * a)

x2 = (b - sr) / (2 * a)

print ('First solution:', x1)
print('Second solution:', x2)

§7.2 JupyterHub

This Friday (next class!) we’ll have a brief programming quiz to help prepare you for
the structure of the midterm. The quiz this Friday won’t be graded, but it’s still a good
exercise to make sure you're on track, and you should make sure that you're comfortable
working with JupyterHub beforehand (e.g., creating Python files, writing basic Python
files, running Python files from the terminal).

So, let’s say we're at your terminal in JupyterHub. If our goal is to run a script that
prints 'Hello' , then we would proceed as so.

$ touch hello.py

25



CSCI 1101: Computer Science I Spring 2022

Now we’ve created the new Python file hello.py (note that its name needed to end in
.py!). Then, in hello.py, we can write:

print('Hello')
print ('Goodbye")

Now, after saving the code we wrote in hello.py, we can run the program in the terminal.

$ python hello.py

And this will indeed print 'Hello' and 'Goodbye' . Let’s update our code to take in
the user’s name.

print('Hello, my name is HAL')
s = input("What's your name?")

print('Nice to meet you', s)

Upon saving hello.py and running it from the terminal, we get the desired behavior.

$ python hello.py
Hello, my name is HAL
What's your name? John

Nice to meet you, John

Cool. It’s a little bit annoying to have Python ask the user for values one-by-one, so let’s
see how can do things a bit more efficiently.
Let’s first make a new file.

$ touch test.txt

And fill it like so.

John

Now we can use the lines of test.txt as input to hello.py! The syntax is as so:

$ python hello.py < test.txt
Hello, my name is HAL
What's your name?

Nice to meet you, John

With this terminal command, hello.py will be run, and it will take successive lines
of text.txt as input any time it requests input. So the second line of hello.py, that
requests the user’s name, went ahead and grabbed the first line from text.txt.Make
sure you understand this example, because something similar will show up on Friday’s
quiz!

26



CSCI 1101: Computer Science I Spring 2022

§7.3 Problem: maximum of 3 integers

Now we're going to discuss a new problem: given three integers a, b, and ¢ (appearing
on their own lines in a .txt file), write a program that prints the largest of the 3 integers.
Here’s a high-level tip on how to approach these kinds of problems: Start by thinking
about the problem with pen and paper, and try to sketch a solution. Then
try to code up the idea you developed on paper.

So let’s start by thinking about our problem in English (and not jump into writing
code!). So, one way to cast this problem mathematically looks like this:

a ifa>banda>c,
(a,b,c) » b ifb>a and b>c,

¢ ife>aandce>b.

We can code that up as follows, in solution.py.

1 a = input()

N
o'
]

input ()
input ()

w
Il

5 if a > b and a > c:
6 print(a)

7 elif b > a and b > c:
8 print(a)

9 elif ¢ > a and ¢ > b:

10 print(c)

Now if we run this on inputs 23, 265, 45, we get the output 45. What? What went
wrong here? In lines 1, 2, and 3, Python takes in its input as str types, not ints. So
it is comparing a, b, and c as strings under the dictionary ordering we mentioned
earlier! Let’s modify solution.py and fix this.

int (input ())
int (input ())
¢ = int(input())

(V] =
o P
] ]

w
|

5 if a > b and a > c:
6 print(a)

7 elif b > a and b > c:
8 print(a)

9 elif ¢ > a and ¢ > b:

10 print(c)

One important skill for you to learn is to be adversarial when thinking about the code
you write. Imagine that someone were to pay you 100$ if you could break your code —
what would you do? Always try to think about edge cases that can break your code, for
instance. In this case, what if we were to run solution.py with inputs 100, 100, and

100 ?

27



10

CSCI 1101: Computer Science I Spring 2022

Uh oh, running this script with 100, 100, 100 gives us no output at all. What went
wrong? In this case, it turns out our math was wrong! The work we did with ‘pen
and paper’ (or on the blackboard, in this case) was totally bogus. The mathematical
formulation we wrote above is incorrect, and fails when there is a tie for the largest
number. So the code we wrote based on our math was busted as well.

We can fix solution.py by using weak inequalities, rather than strict ones.

)
Il

int (input ())
int (input ())
¢ = int(input())

o’
]

if a >= b and a >= c:
print(a)

elif b >= a and b >= c:
print(a)

elif ¢ >= a and ¢ >= b:

print(c)

This code is now correct, but it’s also fairly inefficient. It makes 6 comparisons in order
to find the maximum of 3 numbers, which is quite high. (Finding such a maximum can
be done with only 2 comparisons!). Next time we’ll see how to improve upon this, and
we’ll be talking much more about the efficiency of our programs later on in the course.

§8 Friday, February 4

We started things off with a brief (ungraded) coding assessment, as we mentioned last
time. It’s an important exercise in writing a program in Jupyter, downloading it to
your computer, and uploading it to Canvas. We’ll do something similar next week, and
it’s really important that you get familiar with this process before the midterm comes
around!

§8.1 Problem: maximum of 3 integers (continued)

So, last time we were talking about the problem of finding the maximum of 3 integers.
Remember what the process of solving this problem should look like:

1. Read the problem carefully and understand it.

2. Think of an algorithm for solving it, via pen and paper.

3. Code up your algorithm.

Last time, we developed the above program for solving this problem. We can break it
down into a more modular and readable form as follows:

def get_input():
a = int(input())
b = int(input())

c = int(input())
return (a, b, c)

28



10

11

12

13

14

15

16

17

CSCI 1101: Computer Science I Spring 2022

def solution(a, b, c):
if a >= b and a >= c:
print(a)
elif b >= a and b >= c:
print (b)
elif ¢ >= a and ¢ >= b:

print(c)

(a, b, ¢) = get_input()
solution(a, b, c)

This solution is correct, which is great, but we there’s still something pretty unpleasant
about it — it can take up to 6 comparison to find the maximum of 3 numbers. That’s a
lot. Thinking about it informally, it seems like we should be able to get away with far
fewer.

In particular, think about the following graph for comparing pairs in a, b, ¢ and making

deductions.
a>b
y w
a>c b>c
TV we TV Xafe
a c b c

We’ve reformulated the mathematical thinking underlying a potential solution, but
what’s really the point? The key idea is that this new framing requires only two
comparisons, regardless of the values of a,b or ¢! That’s a considerable improvement
over the 6 comparisons in our old algorithm, and it’s the start of our thinking on the
efficiency of algorithms.

At a high level, any given problem will have many potential solutions (i.e., programs
that always output the right answer). But some are far better than others, as measured
by how fast they run (i.e., the number of operations they use). This field — of measuring
how efficient algorithms are, and how many steps they take — is known as analysis of
algorithms. All analysis of algorithms is really just a counting game, i.e., counting how
many times an algorithm needs to perform a basic operation.

We’ll discuss this in more depth later on in the course, but for now the key idea is that
we’ve found another solution to our problem that’s equally correct (i.e., produces the
right output) but superior in efficiency. Now let’s code up the diagram we drew earlier.

def get_input():

a = int(input())
b = int(input())
¢ = int(input())

return (a, b, c)

def solution(a, b, c):

29



CSCI 1101: Computer Science I Spring 2022

9 if a >= b:

10 if a >= c:
11 print(a)
12 else:

13 print(c)
14 else:

15 if b >= c:
16 print (b)
17 else:

18 print(c)

19
20 (a, b, ¢c) = get_input()

21 solution(a, b, c)

Awesome. We can save this in the file faster.py and write three input lines in a file
test.txt to test it out. Say test.txt has the lines:

1 28
2 45
3 1234

We run faster.py with the arguments in text.txt the same way we did last time, in
the terminal like so.

$ python faster.py < text.txt
1234

And this indeed gives us the output of 1234, as we hoped it would.

Remark 8.1. Warning: on a midterm or quiz, do not add any strings to input()
to politely request the input, unless we ask you to! For instance, if you instead write
input('Please give me a number:') , then your program will be printing that message
when it gets run, when it should only be printing the answer to the problem.

89 Monday, February 7
Two things to mention:

1. It looks like many of you started last week’s homework quite late, maybe a couple
of hours before the due date. This might work for the first or second homework,
but it’s definitely not going to work for homeworks later in the course. Please keep
in mind that things are going to ramp up.

2. Few of you succeeded in the ungraded quiz last Friday. For this reason, we're going
to do it again this Friday. As we’ve already mentioned, it’s really important to
have this process down before the midterm.

30



CSCI 1101: Computer Science I Spring 2022

§9.1 Iteration

Today we’ll be talking about iteration, which is actually one of the last programming
techniques we’ll be talking about in the course. Once you add this to your toolkit, you’ll
be able to convert almost any algorithm from English to Python.

Let’s start things off with an example. The problem is as follows: given n, compute
the number of integers in {1,2,...,n—1,n} that have 3 as a factor but do not have 11
as a factor. Perhaps the most obvious solution is to simply check each number less than
or equal to n and see if it is divisible by 3 but not 11.

It would be pretty hard to code this up (for arbitrary n!) using only the techniques
we already know. Fortunately, a new technique known as the while loop allows us to
implement this idea fairly easily. At a high level, a while loop will:

1. Check whether a condition is true.

a. If true, run the body of the while loop (i.e., the indented code immediately
after the while ) and return to step 1.

b. If false, escape the while loop and move on.

Here’s an example.

while 3 <= 5:
print ('Hello')

This program will just print 'Hello' forever! Python first checks whether 3 <= 5.
That’s true, so it executes the second line (prints the message) and returns to line 1.
Line 1 evaluates to True again, and the cycle continues.

This isn’t too useful an application of while ; we're better off making sure that it
checks a condition that eventually evaluates to false. Let’s try to make that happen.

i=0
while i <= 12:
print ('Hello')

Hm, this still goes on forever. The reason why is that i never changes from 0, so line 2
will always evaluate to True ! Let’s try this again, making sure that i gets bigger as we

go.

i=0
while i <= 12:
print ('Hello')

i=1i+1

This time we only get 'Hello' 13 times - nice! Notice that the body of the while loop
(i.e., the indented code following the loop) indeed should get called 13 times: once for
1=0,1,...,12 (since 12 <= 12 is True ).

Let’s get even more information:

31



CSCI 1101: Computer Science I Spring 2022

i=0
while i <= 12:
print('Hello', i)

i=1i+1

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello 11
Hello 12

© 00 N O O W N B+~ O

-
o

So the loop is indeed doing what we think it is: checking the condition in line 2,
running lines 3 and 4 if true, checking the condition in line 2 again, running lines 3 and 4
if true, etc. Let’s look at an edge case now.

i=0
while i <= -1:
print('Hello', i)

i=1+1

What do you think this will print? Well, line 2 checks whether i <= -1, i.e., whether
0 <= -1. That evaluates to False, so the programs skips all the indented code immedi-
ately after while , which is the rest of the program. So this program prints nothing!

§9.2 Problem: multiple of 3 but not 11

Now let’s play around in JupyterHub, and start off by making a small workspace for
ourselves.

$ mkdir LectureExamples
$ cd LectureExamples

$ mkdir Morning

$ mkdir Afternoon

$ cd Afternoon

$ touch probleml.py

$ touch test.txt

Now we have some nice folders and a Python file in which to write our solution to the
‘multiple of 3 but not 11’ problem. Let’s now write our solution in the form of a function,
which is generally good practice. In probleml.py, we'll write the following.

32



10

11

12

13

14

16

17

18

19

20

21

CSCI 1101: Computer Science I Spring 2022

def get_input():
n = input()
m = int(n)

return m

def solution(n):
if n < O:

raise ValueError('Your value is too small.')

i=0

count = O

while i <= n:
if i % 3 == 0 and not i % 11 ==
count += 1
i+=1

return count

a = get_input()
answer = solution(a)

print (answer)

Think carefully about what we’ve written in this solution, and make sure you understand
it. A very important note: indentation is extremely important in Python. If we
were to indent line 16, for instance, we would have a completely different program!

§10 Wednesday, February 9

§10.1 HW2 postmortem

Before we keep talking about loops, let’s say a few things about the homework: we know
some of you were surprised about your score on the previous homework, so it’s worth
having a brief discussion about it.

First things first: we’re going to be changing the homework a bit moving forward, so as
to have leaner programming questions without much dialogue/story surrounding them.

Now here’s a bit of a rhetorical point: imagine you want to build a house from scratch,
and the house will have three floors. You hire an architect and an engineer, and together
they build the house. Then the house actually collapses before it can be delivered to you.
They tell you that the second and third floors were built perfectly, but the first floor was
built imperfectly and thus the house collapsed. Did they do a good job? How would you
measure their performance?

A similar phenomenon happened on the homework for some of you — we know that’s
frustrating, and this kind of dependence won’t happen much on future homework, but
maybe this example helps you understand how we graded the homework.

One more thing to talk about: some of you used super-powered techniques to solve the
homework problems, like dictionaries, splitting a string with a separator, etc. You’ll get
full points on that for now, because we’re using an automated grader, but this is really
hindering you from learning how to be creative and resourceful with Python.

33



CSCI 1101: Computer Science I Spring 2022

Every homework can (and should!) be solved using only the techniques we learned
before it was assigned. Coding under this kind of restriction will make you a more clever
programmer, and we’ll get to many of the fancier data structures later in the course
anyway (at which point you'll really be forced to be clever in the homework!).

§10.2 Arrays

So, we’ve learned about a handful of primitive types: int, float, bool, and str.
We’ve also learned about the data structure tuple , which stores several values in order.

For instance, x = (2, 3) will set x to have the type tuple. Now what if we change
our mind about the values in x and want it store 4 in the second entry, for instance?
Easy peasy, we just use the syntax we already know for indexing into a tuple (i.e.,
accessing its elements via their positions).

x[0] = 4

Uh oh, this gives us a TypeError : ‘tuple’ object does not support item assignment.
Simply put, once you create a tuple, its values are set in stone forever — you’re not
allowed to change them. The word for this kind of property, where you can’t change a
data structure’s content, is immutable.

In order to overcome this limitation (certainly some of the time we’ll want to have
a data structure whose entries we can change), we’ll need to learn about a new data
structure. Namely, the array type comes to the rescue. It is a data structure for holding
entries of data in order and which is mutable, i.e., whose contents can be changed after
they are created.

Let’s dive into things: how do we actually create an array? We can create an array of
size 10 with a 0 in each entry like so.

arr = [0] * 10

print(arr)

(o, o, o, o, o, 0, 0, 0, 0, O]

So the variable arr is now bound to our array. How can we think of this array?
Roughly speaking, you can think of it as a chunk of 10 contiguous blocks of memory in
your computer. Currently, each block of memory has the value 0, but we can change the
value at the 5th index like so.

arr[5] = 12

print (arr)

to, o, o, o, o, 12, 0, 0, 0, 0]

We can retrieve the values in our array (or index into our array) via similar syntax.

arr[4]

34



CSCI 1101: Computer Science I Spring 2022

0
Now let’s look at the type of this thing.

type (arr)

list

There’s a bit of a notational inconvenience here: strictly speaking, Python only supports
lists, which are slightly different than arrays, but we’ll be thinking of them as arrays
in this course (and using lists only as arrays will make your code run fast!). Another
important operation to know is that you can retrieve the length of your list via len(arr) ,
which comes out to 10 in this case.

There’s only one more thing we want you to know about for arrays, which is how to
sort them. Simply put, sorting an array just means shuffling around its elements so that
they are in ascending order. This can be done in Python as so.

arr = sorted(arr)

Sorting is a really powerful tool that can often render a very difficult problem into a
trivial one. Now you know each of the 5 tools we expect you to know about arrays:

. Creation (arr = [3] * 20)
. Assignment (arr[i2] = 25)

1

2

3. Indexing (x = arr[3] )

4. Length (n = len(arr([12]) )
5]

. Sorting (arr = sorted(arr) )

§10.3 For loops

Now we’ll be learning about a new kind of loop, which you can think of roughly as a
cousin to the while loop. Simply put, the for loop is like a while loop in which the
indexing of a counter is handled for you. For instance, while loops (especially those
that interact with arrays) will often look something like:

i=0
while i < len(arr):
# do cool stuff

i+=1

That’s perfectly fine, but it’s very easy to forget to increment i within the body of
the while loop, especially as your loops get fancier and more complex. The for loop
can be thought of as a while loop that has this incrementing automatically baked into it.
For instance, the previous while loop is exactly equivalent to the following for loop.

for i in range(len(arr)):
# do cool stuff

35



CSCI 1101: Computer Science I Spring 2022

In particular, this for loop executes its body (in this case just # do cool stuff )
while i takes the values 0, 1, ..., len(arr) - 1. For instance, the following loop
will just print 0, 1, ..., 8.

for i in range(9):

print (i)

That’s everything for today — on Friday we’ll do another ungraded coding quiz, as we
mentioned last time.

§11 Friday, February 11

We kicked things off with another ungraded coding quiz, as we prefaced earlier this
week. An important homework note: from now on, the homework will be distributed
to you via JupyterHub in the directory CS1.2022. All the problem statements are
located in that directory, and you can also look at them on github’s website https:
//github.com/jtristan/CS1_2022. We even provide some testing code so that you can
be sure that your solution is reading input and outputting solutions correctly.

§11.1 Problem: find x, y, z

Here’s a problem for us to warm up: let z, y, and z be 3 positive integers such that
x <y <z You are given 7 integers: x, vy, z, T+Y, T+ 2, Yy + 2, T +y + 2, in some unknown
order. Determine the value of z,y, and z.

First (before writing any code!) take a couple minutes to think about how to solve
this problem. Think of a rough skeleton of the program you would write. How do you
know it’s correct? Is it efficient?

Now let’s get our hands dirty and actually build the solution. We’re going to be
receiving these 7 integers one by one, e.g., via

$ python soln.py < input.txt

where input.txt has those 7 integers on separate lines. So we’ll need to use input() 7
times within our program. Let’s try to do this in an elegant way using the techniques
we’ve recently learned about.

def get_input():
data = [0] * 7
for i in range(7):
data[i] = int(input())

return data

arr = get_input()

print(arr)

Now we’ve set up some code to read in the input and show us what we’ve done. Let’s
confirm, using the terminal, that this does what we intend it to.

36


https://github.com/jtristan/CS1_2022
https://github.com/jtristan/CS1_2022

CSCI 1101: Computer Science I Spring 2022

$ python soln.py < input.txt

2, 2, 11, 4, 9, 7, 9]

Awesome — we can keep working on our solution. Let’s work on the tail end of our
program now. Eventually we’re going to need to print our answer, so it’ll be nice to have
a function that handles this for us. Let’s expand soln.py.

def get_input():
data = [0] * 7
for i in range(7):
datali] = int(input())

return data

def produce_output(x, y, z):
print (x)
print (y)
print(z)

arr = get_input()
produce_output (1, 2, 5)

And we can check via the terminal that this indeed prints 1, 2, and 5 on separate lines.
So far so good. Now comes the hard part — actually writing the solution.

def get_input():
data = [0] * 7
for i in range(7):
datali] = int(input())

return data

def produce_output(x, y, z):
print (x)
print (y)
print(z)

def solution(data):

# Now we meed to be clever...

arr = get_input()
a, b, ¢ = solution(arr)

produce_output(a, b, c)

37



CSCI 1101: Computer Science I Spring 2022

Okay, now we need to do some thinking. One place to start is to look at the example
input/output and try to pick up on a pattern. In the example, z and y turn out to be
the two smallest numbers among the 7 input numbers. Maybe there’s nothing there, but
we can try to explain this behavior formally and precisely.

Let’s think about the relationship between x and every other term among the seven.
Since they’re all positive, and x < y,z, x will be less than x + z, x + y, y + z, and
x + y + z. So we've shown that it will always be the smallest number among the bunch.
Awesome, we're 1/3rd of the way there!

In fact, nearly identical reasoning shows that y will always be the second-smallest value
among the seven, since y < x + z, y <y + x, and so on. Now we’re almost done, we just
need z. We might guess that z is the 3rd-smallest number, or even the biggest number,
but the example we have shows that neither of those are true. One observation is that
now we know x and y, so we know x + y. Furthermore, we know x + y + z, since it
will be the largest number among the bunch (as x, y, z are positive). So we can find x +
y + z and subtract x + y to arrive at z, and we’re done!

Now we’ve done the hard thinking, and we just need to translate this idea into code.
Let’s focus on our function solution() for the moment, as we’ve written the rest of
our file. Let’s start off by finding the largest value in our input array, as we’ll need it to
compute z later.

def solution(data):
max = -1
for i in range(7):
if datali] > max:

max = datal[il

What we’ve written will kick things off by calculating the largest value in the array
(make sure you understand why!). We can do something similar to find the smallest and
second-smallest values in an array, but that’s a bit of a hassle. Is there an easier way to
do this (perhaps using something we learned last lecture...)?

Yes! We can sort our array, so that we know exactly where the largest, smallest, and
second-smallest values are.

def solution(data):
data = sorted(data)
x = datal[0]
y = datal[1]
biggest = datal[len(data) - 1]
z = biggest - (x + y)

return x, y, z

Awesome, now let’s finish up the rest of soln.py, using our previous functions for
reading input and printing output. Our final answer will look like:

def get_input():
data = [0] * 7

38



CSCI 1101: Computer Science I Spring 2022

for i in range(7):
data[i] = int(input())

return data

def produce_output(x, y, z):
print(x)
print (y)
print(z)

def solution(data):
data = sorted(data)
x = datal[0]
y = datal[1]
biggest = data[len(data) - 1]
z = biggest - (x + y)

return x, y, z

arr = get_input()
a, b, ¢ = solution(arr)

produce_output(a, b, c)

§12 Monday, February 14

§12.1 HW3 Postmortem

People did much better on the quiz last week - nice. One remark about the last homework:
many people wrote complicated code for the improvement_needed() function, relying on
a whole bunch of casework. That might be correct (i.e., produce the right output) but
there’s a way to do it very succinctly, by observing that the required increases to SAT
and ACT scores don’t depend on one’s class rank or GPA.

Check out the HW3 solution on Canvas to see what we mean. (Looking at the HW
solutions in general might be helpful for learning about programming.) Furthermore,
thinking about how to solve this problem elegantly will help sharpen the problem-solving
skills that are central to computer science (e.g., organizing information, recognizing
symmetries in a problem, etc.).

§12.2 Syntax

Recall that the syntax of a programming language is analogous to the the grammar
of a natural language like English, while its semantics corresponds to the meaning
associated to grammatically correct sentences. After all, we don’t write grammatically
correct sentences for the sake of writing them — the goal is to encode information.
Let’s try to be a bit more formal about this ‘grammar’, or syntax, of Python. In
English, we might define the syntax of a sentence as follows: a sentence consists of a

39



CSCI 1101: Computer Science I Spring 2022

subject followed by a verb following by a complement. We could write this definition as
follows.

sentence :
|subject verb complement
Being rigorous about the syntax of natural languages is a pretty tall order, though.
It can only really be done approximately, and we leave this difficult task to linguists.
Programming languages, meanwhile, have much stricter syntax. A program is simply
a succession of statements, each on its own line. Now we need to define a statement —
fortunately, there are only nine of them that you need to know!
statement :
|assignment
lexpression
[return_stmt
[import_stmt
[raise_stmt
[function_def
if_stmt
|for_stmt
|while_stmt
Now we can (and need to!) go one level deeper. An assignment is simply a statement
of the form NAME = expression. Now what’s an expression? We need to go a couple layers

deeper.... See the Jupyter notebook posted online for more detail here (not just for
assignments and expressions, but for each of the other statements).

§12.3 Errors

We’ve been talking a bit about raising errors in our programs, and it’s worth mentioning
that errors fall into two camps: static errors and dynamic errors. A static error is
one that Python will catch and report to you even before a program is executed. So
syntax errors are static errors, for instance. Dynamic errors, meanwhile, occur only
while the program is being executed, and may depend on the particular inputs that your
program is being run on. For instance, IndexError s are dynamic errors.

Static errors are easy to find - just try to use your code once and you’ll run into the
error. Dynamic errors are a bit harder to find, and require that you test your code on
a variety of inputs that, for instance, hit each of its branches. Testing isn’t the most
fun thing in the world, but it’s very important, and you should be sure to check your
homework solutions on at least a handful of different inputs before submitting.

§12.4 Semantics

Now that we’ve established some rules regarding the syntax of our programs, we can
think about what those programs actually mean, i.e, what they’re doing. Let’s start with
an assignment statement.

NAME = ¢

That statement has the following meaning in Python.

40



CSCI 1101: Computer Science I Spring 2022

1. Evaluate the expression e, resulting in the value v.

2. Remember that the variable NAME has the value v.

That probably agrees with your intuition anyway, but the point is that there is an
underlying translation between lines of code and their meaning, i.e., what the code
actually does. Other, slightly more sophisticated tools in Python might have semantics
that you find a bit surprising at first.

For instance, one common mistake that we see is that people confuse defining a function
with calling a function. Defining a function simply informs Python that a function exists,
and that it might be asked to use later. Calling a function has Python actually use the
function, i.e., to get an answer for particular input(s)! Again, see the notebook online for
detail on the semantics of many other statements.

§13 Wednesday, February 16

First things first: in order to be absolutely sure that everyone can complete the quizzes
we’ve been having, we’re going to create another one with much looser time limits. We’ll
release a small quiz tomorrow and you’ll have several days to complete it and submit it in
Canvas. As we’ve been saying for a while now, it’s important for you to be comfortable
with this process by the time the midterm comes around (in only two weeks!).

One more comment: you should really consider collaborating on your homework with
other people. To be clear, you still need to write your own code and understand what’s
going on (and you can’t look at your friend’s code!), but it can be very useful to bounce
ideas off another person and improve together.

§13.1 Problem: pairwise sum

We’re going to start things off with another puzzle — here’s the statement. You are given
an integer S and an array of integers A”; now determine the number of pairs of entries
in A whose sum is S.

The first, not-so-clever solution is what you might call a brute force solution, i.e.,
simply check all the pairs of elements in A and see if they sum to S. Before we even get
there, let’s kick things off by writing the part of our solution that will read input.

def get_input():
# Get S and N = len(4)
S = int(input())
N = int(input())

# Grab entries of A one-by-one
arr = [0] * N
for i in range(N):

arr[i] = int(input())

return S, arr

"You receive these line-by-line from a .txt file, as in the last few examples and in the homework from
now on.

41



CSCI 1101: Computer Science I Spring 2022

def produce_output(result):
print (result)

And as always, we’ll quickly test this code to make sure it works (at least on a few
examples). We also added a function for outputting our answer, even though it’s pretty
trivial in this case. So now we just need to do the heavy lifting and compute our answer
from the inputs.

As we mentioned, one solution is via brute force — simply look at all possible pairs of
numbers in A and see which of them sum to S. In particular, compare the first number in
A with the other N — 1 numbers, the second number in A with the other N — 2 numbers
(you've already checked the first and second numbers!), and so on. At a high level, we
can see that we’re going to be making

(N=1)+(N=2)+(N=3)+-+1

many comparisons. This gives us a handle on how efficient our algorithm will be. Now
how do we actually implement this?

Well, we’re going to need to iterate over each of the entries in A. Then for each entry
in A, we’ll need to again iterate over all of the entries in A that lie to the right of it.
This will look as follows.

def solution(S, data):
for i in range(len(data)):
for j in range(i + 1, len(data)):

print('i', i, 'j', j)

We’re starting off by printing to make sure that our nested for loops are doing what
we intend them to. We tested on an example and it looks like they indeed are, so we can
keep moving forward. (Make sure that you understand the nested for loops we wrote
above! The idea is to check each pair of distinct elements in data exactly once.)

def solution(S, data):
count = 0
for i in range(len(data)):
for j in range(i + 1, len(data)):
if datal[i] + datal[j] ==
count += 1

return count

Now we can tie everything together.

def get_input():
S = int(input())
N = int(input())
arr = [0] * N

for i in range(N):

42



CSCI 1101: Computer Science I Spring 2022

arr[i] = int(input())

return S, arr

def produce_output(result):
print (result)

def solution(S, data):
count = O
for i in range(len(data)):
for j in range(i + 1, len(data)):
if data[i] + datal[j] ==
count += 1

return count

S, arr = get_input()

result = solution(S, arr)

produce_output (result)

And boom — that’s our solution!

8§14 Friday, February 18

§14.1 Problem: pairwise sum (continued)

So, last time we implemented a ‘brute force’ solution for the pairwise sum problem.
That’s a perfectly fine solution, but it’s not very efficient. This time around, we're going
to think about making our solution faster by being a bit more clever. As we’ve mentioned
a couple times, one of the primary tools we have in our kit is that of sorting our input.
So, with the power of sorting in mind, spend a couple minutes thinking about how you
might implement another solution for this problem.

Here’s the idea: we start off with an index at the first entry in our (sorted) array and
another at the last entry of the array. We add those values up — if that sum is greater
than S, then we make it smaller by moving the rightmost index to the left by one (which
can only make the sum smaller). If the sum is smaller than S, then we make it bigger by
moving the leftmost index to the right by one (which can only make our new sum bigger).
Make sure you understand why this argument makes use of our array being sorted, and
why we won’t miss any possible pairs that sum to S with this procedure.

Okay, let’s write this up. Once again, we need an outer layer of code receiving
input/printing output.

def get_input():
S = int(input())
N = int(input())
arr = [0] * N

for i in range(N):

43



CSCI 1101: Computer Science I

Spring 2022

arr[i] = int(input())

return (S, arr)

def solution(S, data):

# be clever now

S, data = get_input()
result = solution(S, data)

print(result)

Now let’s focus on our solution.

def solution(S, data):
data = sorted(data)
count = 0
left = 0
right = len(data) - 1

# be clever

Okay, now we’ve sorted our data and set our indices left and right at the leftmost
and rightmost entries in the sorted array. Now comes the heavy lifting, where we compute
sums at each step and moving the indices left/right depending on what happens. Lots of
things can happen at each step — maybe left goes up, maybe right goes down, maybe

they both move — so it would be hard to write this with a for loop.

We’re going to use a while loop instead, and we’ll use pass as a stand-in for code

that we haven’t written yet.

def solution(S, data):
data = sorted(data)
count = O
left = 0
right = len(data) - 1

while left < right:

if data[left] + datal[right] == S:

pass

elif datal[left] + datalright] < S:

pass
else:

pass

44



10

11

12

13

14

15

16

17

18

CSCI 1101: Computer Science I Spring 2022

return count

Now our code recognizes that there are three fundamental cases based on the value of
data[left] + datalright] in relation to S. Let’s do some more thinking and replace
those pass’s with real code.

def solution(S, data):
data = sorted(data)
count = 0
left = 0
right = len(data) - 1

while left < right:

if datal[left] + datalright] == S:
left += 1
right -= 1
count += 1

elif data[left] + datalright] < S:
left += 1

CILEES
right = 1

return count

Okay, we have code that runs — nice. Now we tried it on a small example, and it agrees
with our previous brute force solution, so we know it works, right! Wrong. At a bare
minimum, you should test your code on a variety of examples, and even then you won’t
be sure that it works.

In this case, we try it on another example and see that our new solution() produces
far smaller output than the brute force method. Okay, our answer is probably wrong.®
Can you see what’s going wrong? On an input like

S =5
A [2, 2, 2, 3, 3, 3]

our new solution will output 3, when the real answer is 9! The error lies in lines 9 through
12. Our code fails to count correctly when there are repeated values in the data. We
need to update our code to keep track of these repeated values.

def solution(S, data):
data = sorted(data)
count = 0
left = 0
right = len(data) - 1

8We should have more faith in the brute force solution than our new solution, as the brute force solution
is quite a bit simpler, both theoretically and in implementation/code.

45



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

CSCI 1101: Computer Science I Spring 2022

while left < right:

if datal[left] + datalright] ==
v_left = datalleft]
left_count = 0O
while data[left] == v_left:
left += 1

left_count += 1

v_right = data[right]
right_count = 0
while datal[right] == v_right:
right_count += 1
right -+ 1

count += left_count * right_count
elif data[left] + datalright] < S:
left += 1
else:

right -= 1

return count

And now we test on our example and we get the same answer as the brute force
solution. We still don’t know for sure that our new solution is correct, but at least we
can be a bit more confident.

But this new solution took a lot more thinking and coding than the brute force solution
— what was the point? Well, it turns out that our new solution is much, much more
efficient than the brute force solution. That is, as inputs get larger, the new solution
will run much more quickly than the brute force solution. The ideas behind making this
notion of ‘efficiency’ formal — known as the analysis of algorithms — will be the subject
of the next several lectures.

§15 Monday, February 21

§15.1 Analysis of algorithms

Last time, we created two solutions for the pairwise sum problem and mentioned briefly
that one is more efficient than the other, meaning that it runs in less time. One of today’s
goals is to dig deeper into this idea, and to talk about the analysis of algorithms.

Let’s take things from square one — how can we compare the runtimes of two different
algorithms? Perhaps the most obvious thing to do is to simply race them against each
other, i.e., to run them on equal input of increasing size and see how their runtimes
evolve. That’s a pretty reasonable idea, and it’ll certainly tell us something about the
algorithms, but we’ve learned from experience that there’s a much better way of doing
things.

The key observation is that any two algorithms we look at consist of the same funda-
mental building blocks, known as elementary operations. Examples include adding

46



CSCI 1101: Computer Science I Spring 2022

integers, setting an element of an array, testing whether something is True or False,
etc. The idea is that these elementary operations are nearly the most basic things your
computer can do — they can’t be broken down very much into simpler operations. So if
we can just count roughly how many basic operations each algorithm uses, we can get a
good sense of its run time.

A key idea here is that we're going to be abstracting away lots of the low-level detail
and minutiae — we won’t keep track of the fact that some of these basic operations take
a bit longer than others, and we won’t even try to count the exact number of operations
our algorithms take. Rough approximations will be enough.

Simply put, we want to drive home two points today:

1. We're measuring an algorithm’s runtime behavior as a function of its input size.

2. We're counting the number of (some) elementary operations that the algorithm
makes when computing the answer for an input.

e Not every operation, just some! As a rule of thumb, you should count whichever
operation is going to be executed the most in the algorithm.

Let’s get a little more concrete (though things will still be abstract). Let’s say we have
the following function.

def f(x):
g(x)
h(x)
k(x)

What is the runtime behavior of £ 7 Well, Python will evaluate its body line-by-line
when £ is called, so its runtime is just the sum of the runtimes of g, h and k! Please
make sure you understand this before moving forward. Now we’ll be even more concrete.
What about this function?

def f0(Q):
counter = 0O
counter +=
counter +=

counter +=

e =

counter +=
counter += 1

print (counter)

This is a bit of a strange case, because f0() doesn’t even take input. So what f0
prints should just be a fixed number, which we can check will be 5. In fact, counter
is incremented 5 times, regardless of the size of the input to £0() (since £0() doesn’t
even take input!). We would say that £0() is a constant time algorithm.

Another example:

def f1(N):

counter = 0

47



CSCI 1101: Computer Science I Spring 2022

for i in range(N):
counter += 1

print (counter)

In this case, by understanding the semantics of for loops, we can see that counter
is going to be incremented N many times. We would say that f1 is a linear time
algorithm.

def f2(N):
counter = 0
for i in range(N):
counter += 1
counter += 1

print (counter)

Now, the number of basic operations taken by £2 in input N is T(N)=2-N. (We're
simply using 7" to count the number of these operations for a given algorithm). Once
again, we would say that the number of operations performed by £2 is linear in its input
size.

def £3(N):
counter = 0
for i in range(N):
counter += 1
for j in range(N):
counter += 1

print (counter)

Once more, we’ll have that T(N) =N + N =2- N, with one N term coming from each
of those loops. The next example is an important one.

def f4(N):
counter = 0O
for i in range(N):
for j in range(N):
counter += 1

print (counter)

Well, the loop beginning on line 4 has a runtime of N, and it occurs N many times, so
our overall operation count is

N times
—~

T(N)=N+---+ N =N2

48



CSCI 1101: Computer Science I Spring 2022

def £5(N):
counter = 0O
for i in range(N):
for j in range(i+l, N):
counter += 1

print (counter)

Similarly, the runtime here is

_N-(N-1)

T(N)=(N-1)+(N-2)+---+1 5

To see why that formula holds, here’s a proof in a picture.

Triangular numbers: short formula:

nn+1)

Ly=1+2+4n=—"

Proof: 2T, =nn+1)

Two triangles of side n form a rectangle of sides n and n+1:

" 0@ 000

Figure 1: Formula for triangular numbers, from here.

§16 Wedneday, February 23

§16.1 Analysis of algorithms, continued

Last time we started talking about the analysis of algorithms, and we used the function
T(N) to denote (roughly) how many operations our algorithm performs on input N. We
chose to count the number of times that the counter variable is incremented in the
functions we examined last time. Recall the big idea - we want to count the operation
that is performed most frequently by our algorithm, in order to understand its runtime
behavior.

Here’s another example, where there’s more than one input.

def £(N, M):

counter = 0

49


https://slideplayer.com/slide/16352924/

CSCI 1101: Computer Science I Spring 2022

for i in range(N):
for j in range(M):
counter += 1

print (counter)

In this case T'(N,M) = N - M. Make sure that you understand why - the inner loop
contributes a term of M to the counter, while the outer loop causes the inner loop to be
repeated N many times. So,

N times
—~

T(N,M)=M+---+M=N-M.

Now let’s think about the runtime behavior of our brute force solution to the previous
pairwise sum argument. Recall that the core of our solution was as follows:

def solution(S, data):
count = 0
for i in range(len(data)):
for j in range(i + 1, len(data)):
if datal[i] + datalj] ==
counter += 1

return counter

This time around, we’re actually going to count the number of times that line 5 is
executed by our program, since that will be the most common operation.From our
previous discussion of ‘triangular numbers’, we can see that

_ len(data) - (len(data) — 1)

T(S, data) =1+2+---+ (len(data) - 1) 5

Note that this is totally agnostic of what the actual entries of data are; the runtime
behavior depends only on its size, not the actual contents.

Remark 16.1. Technically, line 5 has a couple of operations bundled up: finding datal[i] ,
finding datal[j] , adding them, and checking whether they equal S. But for our purposes,
there’s not much of a difference between (for instance) T'(.S) = S and T'(S) = 45, since they
grow in essentially the same way as S increases. What we really want is to distinguish

T(S) = S from something like T'(S) = S?. Those functions grow very differently as S
increases.

Another example.

def £(N):
counter = 0
if N % 2 ==
for i in range(N):
for j in range(N):

counter += 1

50



CSCI 1101: Computer Science I Spring 2022

else:
for i in range(N):
counter += 1

print (counter)

In this case, T(N) (the number of times that counter is incremented) actually depends
considerably on whether N is even or odd. We have

N? N is even,

T(N) =
() {N N is odd.

(Make sure you can see why.) How do we handle this kind of branching? The short
answer is that computer science often defaults to worst-case analysis. That is, it
usually studies how bad things can possibly get, as opposed to the best-case or the
average.” So, using this idea, we would say that the previous algorithm is T(N) = N? in
the worst case.

Let’s look at another example, keeping this worst-case philosophy in mind.

def f(array):
counter = 0
for i in range(len(array)):
if arrayl[i] % 2 ==

counter += 1

We're actually going to count two things this time; let A(N) be the number of array
accesses for an input array of size N and B(N) be the number of counter increments for
an input array of size N. We can see instantly that A(N) = N, guaranteed. Describing
B(N) requires some worst-case analysis, since it depends on the number of even numbers
in our array. In the worst case, though, all its entries are even, meaning B(N) = N
(again, in the worst case!).

Another example, similar to the previous one but different.

def f(array):
counter = 0
for i in range(len(array)):
if i % 2 ==

counter += 1

In this case, the behavior of the algorithm doesn’t depend on the input array at all!
We just have T'(N) = N/2, in every case (again, we’re counting the number of times that
counter is incremented). Another example, that looks suspiciously close to some of the
code we wrote in our clever solution to the pairwise sum problem. ..

def f(array):
left = 0

9Though there is certainly such a thing as average-case analysis of algorithms!

51



CSCI 1101: Computer Science I Spring 2022

right = len(array) - 1
v_left = array[left]
v_right = arrayl[right]
while left < right:
if v_left <= v_right:
left += 1
v_left = array[left]
else:
right —= 1
v_right = array[right]

The idea is that left and right begin at opposite ends of the array and creep
towards each other, step by step. We can’t really say exactly where they’ll meet in the
array, but the key idea is that the sum of steps taken by left (i.e., the number of times
it is incremented) and right (i.e., the number of times it is decremented) is constant. It
has to add up to the length of the array! So T(N) = N here, where we’re counting the
number of times that left or right are changed.

Another example, getting quite close to the code we wrote for the pairwise sum problem.

def f(array):
left = 0
right = len(array) - 1
v_left = array[left]
v_right = arrayl[right]
while left < right:
if array[left] == arrayl[right]:
left += 1
right —= 1
v_left = array[left]
v_right = arrayl[right]
elif array[left] > array[right]:
left += 1
v_left = array[left]
else:
right —= 1
v_right = arrayl[right]

Using similar reasoning, we can again see that T (V) = N, as left and right will
need to travel a total distance of IV in order to meet and thus conclude the while loop.

92



CSCI 1101: Computer Science I Spring 2022

§17 Monday, February 28

§17.1 Analysis of algorithms, continued

We’ll be continuing our discussion on the analysis of algorithms today. This will be the
final lecture exclusively dedicated to the subject, though we’ll certainly be encountering
it throughout the remainder of the semester. Recall the high-level goal: we want to
understand the runtime behavior of our algorithms. Simply put, how long do they take
to run?

We’re abstracting away from lots of the low-level minutiae of our programs — including
details of the hardware on which they’re running — and simply counting the rough number
of ‘basic operations’ taken by our algorithm. As a rule of thumb, we want to count the
basic operation that is performed most frequently by our algorithm (e.g., incrementing
a counter, updating the element of an array, etc.). The second layer of abstraction is
that we don’t pay attention to the exact details of the algorithm’s input: we only care
about its size. In the case in which the size of an input doesn’t uniquely determine its
runtime under our algorithm, we default to the worst-case scenario. Simply put, what is
the longest that our program will run on an input of size N7

Another layer of abstraction that we’ll introduce today is that we don’t care about
small, constant terms. For instance, runtimes of T(N) = N and T'(N) = N + 3 are
essentially the same for our purposes. As N gets large, these small differences will quickly
wash out. Perhaps even more surprisingly, we’ll say that T(N) = N2+ N and T(N) = N?
are essentially the same, despite the fact that N will tend to infinity as input grows. The
reason why is that both of those runtimes will be dominated by the N? term as N grows.
For instance, when N = 100 (which is not that big), N?/(N? + N) > 99%. That N term
just really doesn’t matter!

The point is that we really only care about the asymptotics of these functions, i.e.,
their behavior as N tends to infinity.

Example 17.1

If T(N) is some polynomial in N, ie., T(N) = apN*¥ + a1 N*! +--- + ag, then
we really only care about the largest-degree term N*. For instance, the runtimes
T(N) = N3 and T(N) = N3 + 10000 - N? are essentially the same. They’re each
dominated by N3.

So we want some tool for compressing all of this information and telling us only what
we need to know about T'(N). For instance, the tool would tell us that the only thing
that really matters about T'(NN) = 2N3 + 10000 - N2 + 50 is that it has an N2 term. The
perfect tool for this is big O notation. It will allow us to — in a meaningful way — ignore
these smaller-order terms. At a high level, T(N) € O(g(N)) means that T'(N) is less
than g(IN) once the input gets large enough.'’

Computer scientists think of big O roughly as a < sign, i.e., T(N) € O(g(N)) can be
interpreted as T(N)“ < 7g(N). Furthermore, computer scientists often play fast and
loose with the equals sign and write T'(N) = O(g(N)), though strictly speaking they
mean that T'(N) is a member of the set O(g(N)). (In particular, you would never want
to swap the sides of that equality sign and write O(g(N)) = T(N).) We'll use both
of those notations on occasion, and we’ll also write “T'(N) is in O(g(NN))” to mean
T(N) € O(g(N)) or T(N) = O(9(N)).

10Strictly speaking, less than some multiple of g(N), but we won’t worry too much about the details
here.

93



CSCI 1101: Computer Science I Spring 2022

Example 17.2

Say T(N) = apN* + ap_1N¥1 4+ ... + ag. Then T(N) € O(N*), agreeing with our
intuition from the previous example! So, for instance, T(N) = 0.125N3 + 45N? + 11
is in O(N3).

Example 17.3

All constants are in O(1). For instance, 2034 € O(1). Intuitively, they’re just
numbers that don’t depend on N and get washed out as N grows to infinity. Another
way of thinking about it is that 2034 = 2034 - N°, so 2034 € O(N") by the previous
example, but N is just 1.

Here’s an exercise — what does big O analysis say about the following function?

def £(O):
counter = 0O
counter += 1
counter += 1
counter += 1
counter += 1
counter += 1

print (counter)

T(N) =5, so this algorithm is in O(1), by the previous example. Another exercise.

def f£(N):
counter = 0
for i in range(N):
for j in range(i+1l, N):
counter += 1

print (counter)

Previously, we’ve seen that T(N) = (N-1)+(N-2)+---+1 =

N-(N-1)
2
O(N?). What about this next one?

. So f isin

def £(N):
counter = 0
for i in range(0, N, 4):
for j in range(i+2, N-4, 3):
counter += 1

print (counter)

Once more, our program has two nested for loops of size proportional to N, so the
algorithm is in O(N?). We really don’t need to worry about the fact that one loop only

o4



CSCI 1101: Computer Science I Spring 2022

goes to N — 4, or that they have step sizes bigger than 1. This will only change T'(N) up
to some constant coefficients, so it doesn’t matter for the sake of big O.

One important note: if an algorithm is in O(N?), then it’s also in O(N?) and O(N*?),
and so on. Intuitively, if T(N)“<” N? then certainly T(N)“<” N3 and T(N)“<” N4
So there are many choices of the big O description we could have for T'(N), but we’d
like to give the ‘tighest’ bound for it, i.e., to write T'(N) = O(g(NN)) where g(N) is as
small as possible.

For instance, if T(N) = 0.25N? + 3N - 20, then T'(N) € O(N?) is tight, since T(N)
indeed has an N? term. But T(N) € O(N?) is not tight, since you can say something
even more informative about T'(N). Of course, you try to give tight bounds whenever
possible, though sometimes loose bounds are the best you can do.

Example 17.4

The sorting function in Python is in O(N log N). So, if you were to plot the runtime
of sorted(arr) as the length of arr grows, you would see a curve that looks like
Nlog N.

Using the result from the previous example, note that the following algorithm is in
O(N?),as T(N) = N2 + Nlog N is in O(N?).

def f(arr):
arr = sorted(arr)
count = 0
for i in range(len(arr)):
for j in range(len(arr)):
counter += 1

print (counter)

This big O notation will show up on the midterm this week, so try to under-
stand these examples! One last note on nomenclature. If an algorithm is in O(1), then it
is said to be in constant time, while algorithms in O(log V) are said to have logarithmic
runtime. More generally,

e O(1): constant,

e O(logN) : logarithmic,
e O(N): linear,

e O(NlogN): log-linear,
e O(N?): quadratic,

e O(N3): cubic,

e O(2"): exponential.

§18 Monday, March 14

§18.1 Midterm postmortem

Midterm grades were posted this morning, and the scores were pretty good overall. The
second part of the midterm was quite challenging (by design!), but a handful of people

95



CSCI 1101: Computer Science I Spring 2022

were able to find the efficient solution that we had in mind. If you were able to find
it, that’s fantastic(!), but if you weren’t able to find it then it’s not too big of a deal.
There’s lots of time left to keep learning about these concepts, and in fact most people
weren’t able to find the efficient solution in only 45 minutes.

§18.2 Problem: 3Sum

Now let’s think about the 3sum problem from Part 2 of the midterm, i.e., given an array,
find the number of triples of entries in the array that sum to 0.
Here’s the not-so-clever solution to the problem.

def sum3(A):
N = len(4)
count = 0
for i in range(N):
for j in range(i+l, N):
for k in range(j+1, N):
if A[i] + A[j] + A[k] ==
count += 1

return count

That would earn you 7/10 points on the midterm, as it’s in O(N?) but not in O(N?).
The more clever solution is as follows: note that A[i] + A[j] + A[k] == 0 is exactly the
same thing as A[i] + A[j] == -A[k] . So the problem really just amounts to repeatedly
applying the 2Sum solution that we already figured out in class.

And copying/pasting code from class was allowed on the midterm, so you indeed could
have used the solution we made in class (with some minor tweaking).

def sum2(S,data,start):
count = 0
left = start
right = len(data) - 1
while left < right:
if data[left] + datalright] ==

count += 1

left += 1
right —= 1
elif datal[left] + datalright] < S:
left += 1
EMISEH
right —= 1

return count

def sum3(arr):

arr = sorted(arr)

o6



CSCI 1101: Computer Science I Spring 2022

count = 0
for i in range(len(arr)):
count += sum2(-arr[i],arr,i+1)

return count

At a high level, we tackled this 3Sum problem by using an existing solution for a
related problem, the 2Sum problem (also called the pairwise sum problem). This kind of
idea is known as a reduction in computer science. The idea is that a problem A ‘reduces’
to problem B if you can use a solution for B to get a solution to A. One takeaway is
that your mental reservoir of solutions will grow as you solve more problems, and this
will making solving additional problems easier and easier!

§18.3 Leetcode

Some of you have been asking about how you can get more practice solving algorithmic
problems: that’s great! One resource to know is https://leetcode.com. It has tons of
problems of varying difficulties — it’s probably best to focus on easy and medium level
problems for now — and a great interface for writing your code, testing it on examples of
your choosing, etc.

It even has weekly contests, problems organized by topic, entire libraries of problems
for mastering certain techniques, etc. You might find that working on these leetcode
problems is actually really fun (especially once you solve them!), and it’ll certainly make
you a better programmer. There’s even a chance that the final project will consist of
having you solve 20 or 30 of these problems!

§18.4 Search problems

Now let’s think about search problems. The idea is that you have a container of
information, say an array, and you want to know whether a value x lives inside this
container. For an array of length N, you may need to check every single entry to know
whether z is an entry of the array, so there’s a linear cost to this search in general (i.e.,
O(N)). Formally, the algorithm is something like:

def is_member(x, A):
for i in range(len(A)):
if A[i] == x:
return True

return False

But what if the array A is sorted? Then this is a bit like looking for someone’s name
in a directory. In real life, you wouldn’t look for John Smith in a directory by checking
page 1, then page 2, then page 3, and so on. You would probably open the directory
roughly in the middle and check to see if the names you’re seeing are before or after
‘John Smith’. If they were names that come before ‘John Smith’, you’d forget about the
first half of the directory and restart your search on the second half. (And likewise if you
were to see names that come after ‘John Smith’.) In this way, you’ve cut your problem
in half with only one step of computation!

o7


https://leetcode.com

CSCI 1101: Computer Science I Spring 2022

So, in the worst case, how many times do you need to cut your problem in half until
you’re done, i.e., until you're left with a single page among the N pages? That would
just be logy(N). This is way faster than the linear scan we talked about a moment ago!

There’s a name for this kind of procedure: it’s known as binary search. It’s an
extremely powerful technique for searching on sorted data, and it often shows up even
in settings that seemingly have nothing to do with searching on sorted data. (Spoiler:
you’ll encounter binary search again on this week’s homework.)

§18.5 Sorting

As we’ve seen time and again, sorting your data is often a crucial move when solving a
problem. We've told you that the fastest solution for sorting is in O(N log N') — that is,
there is a log-linear solution — but we still haven’t told you how to actually sort an array.
One sorting algorithm we’ll discuss now is insertion sort. It’s not the fastest, but it’ll
still help you see how to sort an array, and it’ll introduce you to the idea of recursion,
which we’re going to start seeing a lot of.

Here’s the idea behind insertion sort. Let’s assume we have an array of size N and the
first £ many entries are sorted. In order to improve upon this and make it so that the
first k + 1 entries are sorted, we can look at the (k + 1)th entry (i.e., A[k] ) and place it
in the right spot among the first k sorted entries. How we can find where the (k + 1)th
entry goes among the first k7 Using binary search!

An important idea here is that we are assuming that we have a way of sorting the first
k entries, and we’re then using that to build an algorithm for sorting the first k + 1 entries.
(Crucially, the ‘base case’, in which we need to sort just 1 entry, is trivial — an array of
length 1 is automatically sorted.) This idea, of using a solution as part of itself, is known
as recursion, and we’ll become quite familiar with it over the rest of the course.

8§19 Wednesday, March 16

§19.1 Insertion sort

The name of the game is to sort an array of integers. For instance, we want an algorithm
that takes in the array

(8, 1, 7, 2, 5]

and spits out the array

[1, 2’ 5’ 7, 8]

(without using a built-in function like sorted() ). As we were mentioning last time,
you’ve probably sorted a handful of cards in the past without having anyone explicitly
teach you how to do it.

So, somehow you already have a solution for this within yourself, but the tough part
now is to actually convert it into an effective piece of Python code. As part of this
process, we're going to talk about the divide and conquer tactic for solving algorithm
problems. This is a really important idea in computer science, and you’ll be seeing a lot
of it if you end up becoming a computer science major.

The big picture of divide and conquer looks like this:

o8



CSCI 1101: Computer Science I Spring 2022

1. Begin with a problem P.

2. Divide P into two strictly ‘smaller’ problems P’ and P".

3. Assume, by magic, that you have solutions S’ and S” for the problems P’ and P".
4. Use the solutions S’ and S” to construct a solution S for the original problem P.

Once again, this is a powerful idea in computer science that often gives rise to very
efficient (i.e., fast) solutions, and hopefully you can see why it’s called divide and conquer.
Now let’s return to the sorting problem, and to the insertion sort idea that we were
talking about last time. We can describe the algorithm using the same divide & conquer
format as above. We’ll use the example from earlier to keep things a bit concrete.

1. The problem P is to sort [8, 1, 7, 2, 5].

2. Let’s divide P into P’, the problem of sorting [8, 1, 7, 2] and P”, the problem
of sorting [5] .

3. Assume, by magic, that we can solve P’ and P”.

— We don’t even need magic to sort [5] — it’s already sorted!

4. Usesorted copiesof [8, 1, 7, 2] and [5] to build the sorted copy of [8, 1, 7, 2, 5].

— This is easy! On the one hand we have [1, 2, 7, 8] and on the other we
have [5] . Since that first array is already sorted, we can easily find out where
5 should be placed inside of the array. Once we put 5 in the right spot,
we’ll have a sorted copy of our entire original array!

So the heavy lifting now is to write the function that puts 5 in the right place in

(1, 2, 7, 8] . Formally, let’s say we have an array A where the first entry of A is

some arbitrarily value and the rest of the entries in A are sorted. Now let’s write a
function that sorts A .

[8, 1, 2, 3, 4, 5, 6, 7]
[4-" 1’ 2, 33 5, 6’ 7, 8]

exl

ex1

def insert(A):

N = len(A)
v = A[0]
i=1

while i < N and A[i] < v:
Ali-1] = A[i]
Ali] = v
i+=1

return A

print(insert(ex1))

print (insert (ex2))

99



CSCI 1101: Computer Science I Spring 2022

Make sure to understand what our function insert() is actually doing, and to convince
yourself that it’s right. We’re not going to totally follow through here and complete
the implementation of insertion sort (that will be your job on the next homework!), but
hopefully you can see how this is one piece of our algorithm. Once again, the idea is to
sort the first k = 1 entries of our array A (by doing nothing!), and then, as k increases, to
sort the first & entries of A by simply placing the kth entry of A in the right spot among
the first (k — 1) already sorted entries.

Now, even though we haven’t coded it up yet, let’s think about the efficiency of
this algorithm. After all, analyzing an algorithm’s performance with big-O notation is
extremely important and usually doesn’t even rely on looking at actual code! In this
case, we can see that our algorithm performs O(N) insertions, each of which is an O(N)
operation, so insertion sort is in O(N?).

We told you a while back, though, that there is an O(N log N) implementation of
sorting that Python uses in the sorted() function. How does that faster algorithm
work? It’s actually very similar to insertion sort! Instead of starting things off by splitting
the sorting problem into one problem of size 1 and another of size (N — 1), you instead
split into two problems of size roughly N /2. If we had a linear-time way of merging our
sorted halves of the array, then we would only be performing an O(N') operation (i.e.,
merging) O(log N) many times (i.e., how many times you need to divide N by 2 in order
to reach a ‘base case’ of size of 1). This kind of linear-time merging algorithm indeed
exists, and this idea gives rise to the O(N log N) merge sort algorithm.

§20 Friday, March 18

§20.1 Merge sort

We’re going to keep talking about divide and conquer algorithms today. Recall the
big picture:

1. Begin with a problem P.
2. Divide P into two strictly ‘smaller’ problems P’ and P”.
3. Assume, by magic, that you have solutions S’ and S” for the problems P’ and P".

4. Use the solutions S’ and S” to construct a solution S for the original problem P.

Step 2 is what we’d call the ‘Divide’ step and step 4 is the ‘Conquer’ step. In the case
of insertion sort, we divided the problem P (sort an array A) into the problems P’ (sort
A[0]) and P" (sort A[1:len(A)]). The conquering step amounted to having our insertion
function that places A[0] in the right spot among the sorted copy of A[1:len(A)]. That’s
why it’s called insertion sort!

Last time we also talked about the complexity of insertion sort and concluded that it’s
in O(N?). Simply put, that was because A) the problem P is divided N many times until
it reaches the base case where P” has size 1, and B) each conquering step is in O(N) in
the worst case. So our overall algorithm takes N many O(N) operations, meaning it’s in
O(N?).

We also started speaking briefly about an algorithm that is similar to insertion sort but
much faster: merge sort. The idea is that in step 2 of the divide and conquer blueprint,
we divide P into P’ and P" by splitting it down the middle (i.e., into the problem of
sorting the first half of the array A and of sorting the second half), instead of splitting it
into problems of size 1 and N -1 (i.e., to sort A[0] and A[1:len(A)]).

60



CSCI 1101: Computer Science I Spring 2022

If we do this, then our conquering step will involve taking two sorted arrays and
‘merging’ them into a single sorted array, rather than just inserting one number into a
sorted array (hence the names insertion sort and merge sort!). So how do we go about
merging?

def merge(A, B):

N = len(A)

M = len(B)
C=1[0]  (N+M
i =

j =

k =

# Working with both A and B
while i < N and j < M:
if A[i] < B[jl:
Clk] = A[i]
i+=1
else:
Clk]
j+=1
k +=1

B[j]

# A or B 1s empty
if 1 ==

# A 1s empty

while j < M:
Clkx] = BI[jl
j+=1
k+=1

else:

# B is empty
while i < N:

Clk] = A[il

i+=1

k += 1
return C

Make sure you follow what’s going on here: we’re peeling off the smallest element in
A or B (that we haven’t yet seen), placing it in the sorted array that we’re building,
and continuing to move rightward in A and B. How can we see that the code has

61



CSCI 1101: Computer Science I Spring 2022

linear complexity, i.e. O(N + M)? Note that k can never exceed N + M, and that it is
incremented after every chunk of computation.

Now that we’ve convinced ourselves that merge() is linear, let’s think about the
complexity of the merge sort algorithm overall. There are two questions here:

1. How many times will we need to divide our problem?
2. What is the cost of conquering at each step?

Since we're dividing the problem in half each time, the answer to (1.) is log N. Simply
put, you can only divide N by 2 a quantity of log N many times before you hit 1, the
base case. Furthermore, we just saw that conquering (via merge() ) is in O(NN), so the
complexity of merge sort is O(N log N).

There’s a point we want to drive home here: it may not be easy to see what the real
difference is between O(N log N) and O(N?) off the top of your head, but the difference
is huge. On input of size one million, it would take your laptop about 2.8 hours to
run insertion sort and just 1 second to run merge sort. On input of size one billion
(very reasonable for many practical settings), it would take your laptop 317 years to
run insertion sort and just 18 minutes to run merge sort. Even a super computer worth
millions of dollars would take a full week to run insertion sort on input of size one billion.

Bottom line: laptops with clever algorithms can demolish super computers with
not-so-clever algorithms. Algorithmic thinking matters a lot!

§21 Monday, March 21

§21.1 Data structures and data types

Today, we’ll be discussing another set of powerful tools for solving algorithmic problems:
data structures and data types. As a brief primer, we’ll be discussing all of the following
things:

e Stacks,

e Queues,

o Lists,

e Sets,

e Dictionaries.

Being comfortable with such data types can often help you make your solutions
considerably more efficient than they otherwise would be, and even to help you discover
solutions to problems that are otherwise very unapproachable. To motivate things, let’s
think about the following problem.

Example 21.1

Given a string s containing just the characters (, ), {, }, [, 1, determine
whether the input string is valid. An input string is valid if:

1. Open brackets are closed by the same kind of bracket, and

2. Open brackets are closed in the correct order.

62



CSCI 1101: Computer Science I Spring 2022

For instance, 'O', 'O{}',and '{}[]' are valid, but '")(' and '(J' are not.

Think seriously about how to solve this problem; somehow it seems simple enough, but
it’s really not easy to solve using only the techniques that we currently know. It turns
out, though, that it’s generally considered to be quite an easy problem, once you have
the right tool.

The tool we really want here is that of a stack. Abstractly, a stack is a data type
where you can add values to the stack and remove the most recently added element.
That’s it - it’s like a magical backpack where you're allowed to do two things: 1) place
items in the backpack, and 2) ask the backpack to return the last thing that you gave
it.'!

Now, the notion that we’ve just described for the stack (i.e., as a collection of data
with a few key operations) is known as a data type. It is simply an abstract description
of an interface for handling data, as in the magical backpack that you can place items
in and request for the most recently placed item. Notably, it does mot include any
implementation details of how such a thing could be done by a computer.

An actual implementation of such a data type is known as a data structure. Once
again, the data structure includes the details of how the data type is actually implemented
under the hood. Now let’s use this stack data type to solve our problem.

def match(oc, cc):
# Check tf opening character (oc) and closing character (cc) match
if cc = ")':
return oc = ' (!
elif cc = '}':
return oc ==
else

return oc == '['

def solution(s):

N = len(s)
A=1["'] *N
top = 0

for i in range(N):

c = slil

if c == '(' or ¢ == '{' or ¢c == '[':
Altop]l = ¢
top += 1

else:
if top == O:

return False

top =1

HStrictly speaking, we also need to be able to create the stack and to check if it’s empty, but that’s the
easy part.

63



CSCI 1101: Computer Science I Spring 2022

v_top = A[top]
if not match(v_top, c):

return False

return top ==

This code should work, but it’s pretty messy. The logic of our algorithm, which is very
simple, is mixed up with the logic of implementing the stack. We’d really like to separate
these things: in one place you’d have the data structure’s details, and in another place
you’d use the data type elegantly. So let’s actually do this.

empty push push push pop
stack

Figure 2: Visualization of a stack, from here.

We'll need functions to create a stack, push a value onto a stack, pop the most recent
value from a stack, and check whether a stack is empty. This will make our code much
cleaner, and it will let us use the stack as an abstract data type (i.e., without running
into its implementation details in the middle of our algorithm).

def match(oc, cc):

# Check tf opening character (oc) and closing character (cc) match

if cc = ')"':

return oc = '(!
elif cc = '}':

return oc == '{'
else

return oc == '['

def create(size):

64


https://www.programiz.com/dsa/stack

CSCI 1101: Computer Science I

Spring 2022

def

def

def

def

A=[""'] * size
top = 0
return (top, A)

push(v, stack):
(top, A) = stack
Altop] = v

top += 1

return (top, A)
pop(stack) :

(top, A) = stack
top = 1

v = A[top]
return (top, A)
is_empty(stack):
(top, A) = stack
return top ==
solution(s):

N = len(s)

stack = create(N)

for i in range(N):
c = sli]

if ¢ == ‘(! or ¢c ==

|{|

or Cc ==

else

stack = push(c, stack)
if is_empty(stack):

return False

(v_top, stack) = pop(stack)
if not match(v_top, c):

return False

return is_empty(stack)

|[|:

Our new solution is much cleaner — we’ve separated the data type from the data
structure. We can now see that solution() is just using a stack in a fairly straightforward
way. The code is now easier to read, write, and reason about. It’s much less likely
that we’ll forget to increment a top counter somewhere, and we can even change our
implementation of the stack data type (to something simpler or faster) without changing
solution() at all!



CSCI 1101: Computer Science I Spring 2022

§22 Wednesday, March 23

§22.1 The stack data type

Last time we talked about using the stack data type to solve the problem of parenthesiza-
tions being valid. As we implemented it, the stack data type came with four operations:
creation of the stack, determining whether the stack is empty, pushing a value onto the
stack, and popping a value from the stack.

The exact operations required by a stack can vary slightly across textbooks and websites
(for instance, one source might require that we have a way to know how many elements
are currently in the stack), but the key operations are really push and pop. It’s a bit like
a stack of trays: you can place a tray ontop of the stack, and you can pop off the most
recently placed tray (whereas it’d be hard to grab a tray from the middle). Those two
operations are really the essence of the stack data type.

We also talked about data structures last time, and implemented the stack data type
using a data structure consisting of an array and index that kept track of the first
unoccupied entry in our array. Let’s remind ourselves of the code that we wrote.

def create(size):
A=1["] * size
top = 0
return (top, A)

def push(v, stack):
(top, A) = stack
Altop] = v
top += 1
return (top, A)

def pop(stack):
(top, A) = stack
top = 1
v = A[top]
return (top, A)

def is_empty(stack):
(top, A) = stack

return top ==

Recall that we had to be deliberate about separating the logic of our data structure
from the logic of our algorithm for solving the parenthesization problem. In addition to
making our code easier to read and reason about, it also allows us to compartmentalize
our data structure from our algorithm, in the sense that we can easily make our data
structure cleaner or more efficient without perturbing our algorithmic solution.

So that was just one possible data structure for implementing the stack data type:
using an array and an index. There’s another way to implement the stack data type,

66



CSCI 1101: Computer Science I Spring 2022

using tuples.'” How would we represent an empty stack as a tuple? Well, we can use the
empty tuple () . And if we already have some stack S, we can represent v being pushed
onto s by (v,S). This is a recursive idea, one of the key themes of the course!

Let’s be a bit more concrete and see this in action. We can start with an empty stack
s = (O . Now we can push 3 onto s and end up with s = (3, () . We can then push
11 and get s = (11, (3, )) . To pop from a given (non-empty) stack s, we can grab
the value s[0] and replace s with s[1] .

It can be a bit mind-boggling, but try to understand why this idea works before seeing
how we implement things in Python. We can now write:

def create(size):

return ()

def push(v, stack):

return (v, stack)

def pop(stack):

return stack

def is_empty(stack):

return stack == ()

This implementation is much simpler than what we saw last time! The pop() function

is maybe the most difficult to understand — the idea is that we want pop(s) to return a
tuple where the first entry is the topmost element of s and the second entry is the rest
of s. But s itself already takes this form! This data structure we’ve just implemented
is really a linked list, in which values are connected to each other by pointers.'?

Now, in order to make sure that our implementation of the stack is actually useful, we
need to analyze its complexity. For instance, our implementation wouldn’t be too useful
if it turns out that pop() is in O(N'?) for instance (and not in O(N?)).

Remark 22.1. When we think about the efficiency of the stack operations, we’ll want to
think about their efficiency in terms of the size of the underlying stack data structure, not
necessarily the argument to the operation. In this case, all our functions take stack as an
argument — because they need to! — so it’s just the usual runtime analysis, but this remark
will be more important when we get to object-oriented programming on Friday. All in due
course.

So, what are the runtimes for our new implementation of the stack? Well, create()
is certainly in O(1), as it doesn’t even use its argument, and push() simply creates a
set with two entries so it is in O(1). Likewise, pop() simply returns its argument and is
in O(1), and is_empty() tests for equality with () which is O(1). This is is a great
implementation — everything is constant time!

In fact, this beats our previous implementation, for which create() is in O(size).
Furthermore, our two implementations can actually differ in their behavior! Our recent

1211 fact, there are always many possible data structures for implementing a given type!
13This isn’t too important for now, so don’t worry if it doesn’t quite make sense yet.

67



CSCI 1101: Computer Science I Spring 2022

implementation has push() defined recursively, so you can place as many values on it
as you’d like. Is that true for our older implementation? No — once we push more than
size many elements onto our stack, we’ll get an IndexError because we’ve filled our
underlying array.

How can we fix this? Well, anytime our index gets bigger than the length of our array,
say N, we can make a new array of length N+1 , copy over the N values from the old
array to the new array, and add our new value being pushed. That idea will certainly
work, but it will mean that pushing becomes an O(N) operation, due to the copying of
all of these values. So that would be a pretty terrible implementation.

Maybe we can be a bit more clever by adding not just one more cell to our array but
1,000 or 1,000,000 cells to our array. This will mean that only some of the time we have
to copy of our array and incur the O(N) cost, but we're still at O(N) in the worst case,
which is pretty bad.

We can really solve this problem using the import idea of array doubling: anytime
our underlying array gets full, we create a new array of double the size and add on
our value being pushed. We can implement this in code for our older data structure as
follows.

def create(size):
A=1["'] x1 # Can ignore size now
top = 0
return (1, top, A)

def push(v, stack):
(size, top, A) = stack
if top == size:
tmp = [''] * (2 * size)
for i in range(top):
tmp[i]l = A[i]

A = tmp
Altop]l = v
top += 1

return (2*size, top, A)

def pop(stack):
(size, top, A) = stack
top =1
v = A[top]
new_stack = (size, top, A)

return (v, new_stack)

def is_empty(stack):
(size, top, A) = stack

return top ==

68



CSCI 1101: Computer Science I Spring 2022

Now create() , pop() , and is_empty() are in O(1) — great. But push() is still in
O(N) in the worst case — when we need to double our array — so it doesn’t seem like
we’ve really achieved much.

But let’s try to be a bit more discerning here. We’ve discussed that worst-case analysis
is often the right measure of complexity, but this is not always true. Sometimes it is in
fact better to consider a notion of the average complexity of an operation, and this is
such a case.'” When pushing repeatedly onto our stack, we will only sometimes have to
double our array, and the doubling will in fact grow increasingly rare as our array grows
(can you see why?).

We really want to analyze our data structure while keeping in mind that it will be used
over a sequence of operations, not just once. This idea, of studying the cost associated
to a sequence of calls rather than a single call, is known as amortized analysis. In this
case, when pushing N = 2¥ elements onto our stack, we will incur a total array doubling
cost of 1+2+22+23+...4 281 =92% _ 1 Over the course of N = 2¥ calls to pushQ) ,

that comes out to an average cost of 2;;1 < 1 due to array doubling. So our amortized

analysis tells us that pushing is actually O(1) with array doubling when amortized over
a sequence of calls.

Next time we’ll continue discussing data types and data structures, and begin learning
about object-oriented programming.

§23 Friday, March 25
§23.1 Recap

We’re going to keep talking about data types and data structures, and — as promised —
we’ll begin discussing object-oriented programming (OOP). A quick warning: googling
“object-oriented programming” will give you tons of results about software engineering
and advanced OOP ideas, but you really shouldn’t pay much mind to those for now. The
goal in CS1 is really to convince you that OOP is something natural and useful to have,
and that it will make our life quite a bit easier.

A quick recap before diving into things: we’ve been talking about this idea of a stack
data type, and thanks to the stack Monday’s problem was fairly easy to solve. Without
the stack, the problem was difficult even to approach, but making use of the concept
makes the problem fairly intuitive. The key idea to the stack was that we have four
operations. We can:

1. Create a stack.

2. Test whether our stack is empty.

3. Push an element onto our stack.

4. Pop an element from our stack.

We also talked about 3 implementations for the stack (or data structures, using the
language we recently learned).

1. Array + index.

2. Nested tuples.

3. Resizeable array + index + size.

141 e., we will consider the average cost of the operation over a sequence of calls, rather than the average
over all possible inputs of size .

69



10

11

12

13

14

16

CSCI 1101: Computer Science I Spring 2022

As always, we followed each implementation with an analysis of its complexity, i.e., of
its runtime behavior. In the case of the resizeable array, we used amortized analysis to
see that pushing to such an array has an amortized cost of O(1).

Recall also that, after writing functions for creating, pushing, popping, and testing
emptiness, we wrote the following solution for the parenthesization problem.

def solution(s):
N = len(s)

stack = create(N)

for i in range(N):

c = sl[i]

if ¢ == '(' or c == '{' or c == '[":
stack = push(c, stack)

else:
if is_empty(stack):

return False

(v_top, stack) = pop(stack)
if not match(v_top, c):

return False

return is_empty(stack)

But there’s something a bit funny going on here — what exactly is the stack variable
on line 37 We're calling it stack, and we’d like to think of it as an instance of the stack
data type, but it’s really something quite a bit more concrete. In fact, it’s just a tuple of
several values, which you could unpack and even directly modify if you wanted to.

We’d instead prefer to keep things a bit cleaner and more abstract. To see precisely
what we mean, let’s pivot a bit and think about numbers. What exactly is a number?
How do we define a number, and what is the essence of a number? One thing you
might say is that a number is a decimal expansion like 2.31, and that you can add them,
subtract them from one another, etc. We also learn that they not only have operations
and representations, but also properties. For instance, z + (y + z) = (z + y) + z always,
which is known as associativity.

So, is that a number? What if we just drew four many dots on a piece of paper?
You might reasonably think of that as representing the same thing as 4, and IV is yet
another example! So what’s really going on here — how can we capture the essence of
what it means to be a number? Really, a number is abstractly any element of a set S
with operations for addition and multiplication satisfying the nice properties that we're
used to (e.g., associativity, etc.).

Our discussion of the stack is similar; you shouldn’t need to worry at all about how
the stack is represented, you should only have access to its operations and their nice
properties. In fact, you shouldn’t even be able to see the underlying implementation of
the abstract data type!

As a first approximation, that’s what object-oriented programming (OOP) is about.
We have an abstract notion, with a couple key functionalities and many possible imple-
mentations/representations, but we want to keep the implementation details out of sight
(and sometimes out of mind, as well). Simply put, when it comes time to use a data type,
we shouldn’t need to — or even be able to! — see the underlying data structure. This is

70



CSCI 1101: Computer Science I Spring 2022

where OOP comes in.

§23.2 Object-oriented programming

The bread and butter of object-oriented programming (OOP) is a class, which is roughly
a way of packaging a data structure into a nice interface (more akin to a data type).
Here’s the syntax.

class Stack:
def __init__(self,):
self.A = [0]
self.top = O

self.size = 1

A point on notation: functions inside classes are called methods, while data/values are
called attributes. We've started off by giving our class a special initialization method
init__() , which lets Python know that this is how new objects of our class are created.
allow Python to do some magic

More generally, methods that start and end with __
with syntax. In this case, we can now write the following:

stack = Stack()
type(stack) # evaluates to __main__.Stack

Furthermore, we can make the self.A, self.top, and self.size attributes protected
by starting their names with two underscores. This will mean that users of the Stack
class are not allowed to access these underlying attributes. Let’s make that change and
keep working on our class.

class Stack:
def __init__(self,):
self.__A = [0]

self.__top = 0

self.__size = 1

def push(self, v):

if self.__top == self.__size:
self.__size *= 2
tmp = [0] * self.__size
for i in range(self.__top):

tmp[i] = self.__A[i]

self.__A = tmp

self.__A[self.__top] = v

self.__top += 1

Now we have a method for pushing onto a stack, implemented using array doubling,
and its syntax is a bit different than what we’re used to.

71



CSCI 1101: Computer Science I Spring 2022

stack = Stack()
stack.push(3)

Now we can begin to see what the self parameter is doing — it’s representing the
object of the class on which the method is being used!'> Now let’s add a parameter for
popping. We’ll add the following code to our class.

def pop(self):
self.__top =1
return self.__A[self.__top]

And if a user tries to be malicious and access the values self.__top or self.__A,
they’ll run into an AttributeError , since the underscores tell Python to protect the
attribute. For example,

stack = Stack()
stack.__top

will throw an AttributeError .
Something to note: we're not writing stack = stack.push(3) , we're just writing

stack.push(3) . That’s because these methods don’t return anything; they’re actually
modifying objects in-place. So stack.push(3) changes the object stack itself, and we

can move forward knowing that a value has indeed been pushed onto stack .
Using this new OOP syntax, our previous solution to the parenthesization problem
would look something like this.

def solution(s):
N = len(S)
stack = Stack()

for i in range(N):

c = s[i]

if ¢ == '"(" or ¢ == '{' or c == '[':
stack.push(c)

elisel
if len(stack) ==

return False

v_top = stack.pop()
if not match(v_top, c):

return False

return len(stack) ==

5The jargon is piling up a bit, so feel free to take a minute to let things sink in.

72



CSCI 1101: Computer Science I Spring 2022

What was the point of all this? Our code is now more abstract, easier to read and
reason about, and more modular. We’ll keep playing with these ideas in the coming
weeks, and hopefully you’ll soon agree that OOP is a useful way of structuring and
reasoning about code. Enjoy the weekend!

§24 Monday, March 28

§24.1 Classes, continued

Last time we created a class to implement the stack type, with both attributes and
methods. The attributes included the underlying array of the stack, an index telling
us where we are in the array, and the length of that array. We also had methods for
implementing the stack properties (like pushing and popping).

Remark 24.1. In Python, absolutely everything is an object from a class, even the simplest
things like int s and bool s!

Example 24.2

Let’s say we want to define the complex numbers in Python using a class. We might
write something like:

class Complex:
def __init__(self, r, i):
self.real = r

self.imaginary = i

This gives us a nicer interface for complex numbers than just storing them as
tuples of floats, for instance. (And we can then implement addition, subtraction,
multiplication, etc. if we’d like.)

So, in Python everything is an object. If we write something like x = 3, what exactly
is happening? What happens is that x is created as a reference to the value 3, which
is stored somewhere in memory. In fact, we could even create an object with two parts:
an integer and a reference to another object (which itself is an integer and a reference
to another object, etc.). This kind of idea can allow us to implement linked data
structures. Let’s pursue this idea further.

class Node:
def __init__(self, v, tl):
self.value = v

self.tail = tl

Now we have a simple class for nodes, which are the building blocks of linked data
structures. We can now implement a stack as a linked data structure as follows.

73



CSCI 1101: Computer Science I

Spring 2022

class Stack:

def

def

def

def

__init__(self):
self .head = None

self.size = 0

push(self, v):
new_node = Node(v, self.head)
self .head = new_node

self.size += 1

pop(self):

v = self.head.value

self .head = self.head.tail
self.size —= 1

return v

__len__(self):

return self.size

It’s even possible to take this idea further and create nodes with left tail and right tail

attributes (which give rise to the tree data structure), etc.

§24.2 More types!

Let’s talk a step back here. So far we’ve mentioned a handful of types with certain

essential operations (or methods, once we set them up as classes).

e Stack: push, pop (last in & first out, or LIFO)
e Queue: enqueue, dequeue (first in & first out, or FIFO)
o List

e Set

Dictionary

We haven’t spoken too much about the last couple types, but they're very important.

In fact, they’re so important that they’re built right into Python!

§24.2.1 List

A list is like an array where you're also allowed to add and remove elements. (That is,
the length of a given list can change over the course of its lifetime). Here’s the syntax of

using lists.

L= 1%

3, 4, 5]

1[2] # is 4

74



CSCI 1101: Computer Science I Spring 2022

1[2] = 56
1 # 4s [2, 3, 56, 5]

Now let’s show off that lists can actually grow, unlike arrays. The syntax to add an
element to the end of 1 (or to append to 1) is as follows.

1.append (567)
1 # 4s [2, 3, 56, 5, 567]

It’s also important to keep track of the complexity of these list operations. This site
has detail on the runtime behaviors of these operations — you should be able to make
sense of them, keeping in mind that Python implements lists using the dynamic array
doubling that we mentioned previously.

§24.2.2 Set

A set is a type for storing a collection of items where you can add items to the collection,
remove item from the collection, and test membership of a value in the collection.
Informally, sets are like backpacks: you can place values in them (without any notion
of order), pull values out, and check whether something lives in your backpack. One
additional detail is that sets don’t permit repetition.

In this sense, they’re like sets from mathematics; they simply keep track of the
distinct things you have, they don’t keep track of repeated elements. (For instance, to a
mathematician the sets {2,3,4} and {2,4,3,4} are identical.)

§24.2.3 Dictionary

The dictionary is a type that stores (key, value) pairs. This supports insertion of (key,
value) pairs and lookup of the value associated to a given key. For instance, we might
write:

d = dict(Q)

d['Joe'] = 'B-'

d['Caleb'] = 'A'

'Joe' in d # ewvaluates to True
d['Joe'] # ewaluates to 'B-'

Next time we’ll talk about the complexity of these operations for sets and dictionaries,
which will involve understanding a bit about how they work under the hood.

8§25 Wednesday, March 30

§25.1 Dictionary, continued

Last time we introduced a couple new players: lists, sets, and dictionaries. We mentioned
that a dictionary is a collection of (key, value) pairs and that we usually expect at least
three functionalities from a dictionary:

e Insertion of a (key, value) pair into a dictionary.

75


https://peps.python.org/pep-3128/#motivation

CSCI 1101: Computer Science I Spring 2022

e Look-up of the value corresponding to a given key (which must be unique!).

e Testing the existence of a key in the dictionary, i.e., whether there exists a (key,
value) pair where key=k for given k.

Dictionaries are a common and powerful data type, and today we’ll discuss how to
actually implement them. We’ll kick things off with a class for (key, value) pairs (or
KVPs).

class KVP:
def __init__(self, key, value):
self.key = key

self.value = value

def __str__(self):

return str(self.key) + ' : ' + str(self.value)

Great — now we can write things like kv = KVP('Joe', 'B-') . And because we’ve
implemented a __str__() method, Python now knows how to turn KVPs into strings,
which allows it print them! Now comes the hard part: actually implementing the
dictionary data type. One reasonable place to start is to use a list as the underlying
data structure for a dictionary, where each entry has some KVP. Try to think about
how you would implement insertion, look-up, and testing if you were to use a list to
implement the dictionary.

Now let’s get to writing (we’ll use self.repr as shorthand for self.representation ).

class LDict:
def __init__(self):
self.repr = []

def __contains__(self, key):
for kv in self.repr:
if kv.key == key:
return True

return False

Okay, now we can create empty dictionaries and lookup keys in our dictionaries. The
magic method __contains__() allows usto write k in my_dict where my_dict = LDict() .
Simply put, Python is thoughtful enough toread k in my_dict and then do my_dict.__contains__(k) ,
which has the effect of making things more readable for us humans. Furthermore, in line
6 we're making use of the fact that we can iterate directly over lists. For instance, if A
is a list type in Python then we can write

for a in A:

# do something with a

rather than

76



CSCI 1101: Computer Science I Spring 2022

for i in range(len(A)):
a = A[i]

# do something with a

which is easier to read and write. Okay, now we need a method for inserting values into
a dictionary. Rather than writing something like my_dict.insert_kvp(key, value) , it

would be nice if we could just write my_dict[key] = value . Fortunately Python allows

us to do just that, by making use of the magic method __setitem__() .

class LDict:
def __init__(self):
self .repr = []

def __contains__(self, key):
for kv in self.repr:
if kv.key == key:
return True

return False

def __setitem__(self, key, value):
kv = KVP(key, value)
self.repr.append (kv)

Now all that’s left is lookup. In order to use the notation my_dict[k] rather than

something like my_dict.get_value(k) , we'll use the magic method __getitem__() this
time. Our first prototype is now complete.

class LDict:
def __init__(self):
self.repr = []

def __contains__(self, key):
for kv in self.repr:
if kv.key == key:
return True

return False
def __setitem__(self, key, value):
kv = KVP(key, value)

self.repr.append (kv)

def __getitem__(self, key):

77



CSCI 1101: Computer Science I Spring 2022

for kv in self.repr:
if kv.key == key:

return kv.value

As always, we now need to think about the complexity of these operations. Creation
is certainly O(1), and insertion is just an append operation on a list type, which we
saw is amortized O(1). Lookup and testing both involve iterating over self.repr , so
they are O(N) in the worst case. That’s not a very good implementation at all: O(N)
lookup and testing are quite bad if we want to work freely with dictionaries containing
millions or billions of entries.

How can we speed things up? One way of speeding up a search that we’'ve already
seen is to use binary search! In this case, that would require for us to keep our KVPs
sorted by their keys. We can do that, so let’s think about how that changes things. If we
were to use a sorted list as the underlying data structure, then insertion would be O(N')
in the worst case, as we might need to move all the entries in our array by 1 in order to
fit our new KVP in the right spot. The payoff is that, using binary search, lookup and
testing would both be O(log N') in the worst case. So there’s a tradeoff here — insertion
gets slower but lookup and testing get faster.

It turns out that there’s a way of doing things so that we won’t need to make any
compromises: by using a hash table. Hash tables are pretty magical, and they rely on
the idea of generalizing an array with integer indices to an array with arbitrary indices
(roughly speaking). More explicitly, say we had a magical function h() for mapping
keys to integers such that different keys always map to different integers.

Then we could simply use a big array A as our underlying data structure for dictionaries
where A[h(k)] = v for each KVP (k, v) in our dictionary. Take a moment to understand
why this makes sense, and why it would make insertion and lookup be O(1)! Simply put,
such an h() would solve all of our problems, and is known as a hash function.

Right now, this is a romanticization for several reasons:

1. In practice, h() might give rise to a collision, i.e., h(k1) == h(k2) for distinct
keys k1 and k2. This causes a problem with how we store (k1, v1) and
(x2, v2) in our underlying array A . (They can’t both go to A[h(k1)1!).

2. How big does our underlying array A need to be? What if h() can spit out
integers between -1e10 and 1el0, but we only need to store a couple thousand
KVPs? We wouldn’t want to lug around a huge array in memory anytime we’re
using a dictionary.

It turns out that point (1.) can be addressed using something called chaining and
point (2.) can be addressed by setting A to be of size N and replacing h(k) with
h(k) % N. More on dictionaries in the coming lectures.

8§26 Friday, April 1

A couple quick administrative notes: after the next midterm, we’ll be discussing how to
make a video game in Python! We’ve already covered lots of ground concerning Python
fundamentals and algorithmic thinking, so we’ll do something a bit more fun for the end
of the course. (And it will also teach us a lot about using libraries, organizing larger
pieces of code than we’re used to, etc.)

78



1

2

3

CSCI 1101: Computer Science I Spring 2022

§26.1 Problem: rings and rods

Here’s a cool problem, from that nice website LeetCode that we mentioned earlier: rings
and rods. The key idea is that for each rod, we want to keep track of the rings that are
placed on it, but we don’t actually care whether a rod has 5 red rings or 10 red rings.
We only need to keep track of whether a given rod does or does not have a certain ring
color, and doing so will make sure our code runs faster (e.g., we won’t be slowed down
by a rod that has millions of red rings).

So we want to keep track of the rings on a given rod in a way that doesn’t allow for
repetitions, and we also don’t care about the order of the rings on a given rod. That
sounds a lot like we want to use the set data type! Also, we’ll need to keep track of
this collection of rings for each given rod, which means a dict will be handy as well.
Let’s start writing a solution.

class Solution:

def countPoints(self, rings: str) -> int:
rods = {}
for i in range(10):
rods[i] = set()

N = len(rings) // 2

for i in range(N):
color = rings[2xi]
rod = int(rings[2*i + 1])
rods[rod] .add (color)

count = 0
for i in range(10):
if len(rods([i]) == 3:

count += 1

return count

Nice! We can check that this solution works in LeetCode, which will in fact tell us
that it’s faster than most submitted Python solutions. Hopefully it’s satisfying to see
techniques that we’ve learned come together to form simple and efficient solutions.

§26.2 Semantics

Let’s walk through some Python code using python tutor. If we run the following code,
what exactly is happening?

class Test:
def __init__(self):
self.n = 42

79


https://leetcode.com/problems/rings-and-rods/
https://leetcode.com/problems/rings-and-rods/
https://pythontutor.com/visualize.html#mode=edit

10

11

12

13

CSCI 1101: Computer Science I Spring 2022

def f(self, x):
y = X + self.n

return y

o = Test()
o.f(21)

After line 8, Python has been informed of the existence of a class Test with two
methods. There aren’t any objects in this class yet, but Python has been taught how
to work with the class if it is instructed to. In line 10, an object o is created with two
methods and an attribute (can you see what they are?). And in line 11, a method of o
is called (0.£() ), which itself makes use of one of o’s attributes (o.n).

Python tutor can be a great resource for understanding the meaning (or semantics) of
Python code, so feel free to play around with it yourself! Let’s look at another, trickier
example.

def f(x):
y=x+1

return y

def g(x):
y=£f&x +4

return y

def h(x):
y = gx) + £(x)
return y

result = h(4)

This is a hard one to explain on paper, but it’s worth following carefully in python
tutor. One of the key lessons is that functions have their own environments. For instance,
the x in £(x) on line 10 and the x on line 2 are not the same thing. They may take
the same value at some moments, but they are allowed to vary.

Another important observation is that the manner in which these functions are executed
follows a familiar format: that of a stack! In particular, line 13 involves computing h(4) ,
which is now the first order of business, so to speak (i.e., the topmost element of our
stack). But h(4) makes use of g(4) and £(4) so executing those computations is now
the first order of business (i.e., they are now at the top of our stack). And, finally, when
calling g(4) we are then forced to compute £(4) , which now becomes the first order of
business. This is precisely a stack! Simply put: if the first order of business is to compute
f1(x) but f1(x) uses f2(x) , then computing f2(x) now becomes the first order of
business. (And once £2(x) has been evaluated, we can proceed with our original goal of
computing £1(x) , which becomes the highest priority.)

We can take this one step further: rather than having functions use other functions,
we can have a function use itself! This idea is known as recursion, and it’s one of the
most important concepts in computer science. Let’s take it for a spin.

80



CSCI 1101: Computer Science I Spring 2022

def f(x):
y=f(x + 1)

return y

£(1)

Cool, we have a function £() that makes use of itself — or recurs — and we’ll test it
on input 1. Let’s run it. Uh oh, we’ve run into a RecursionError , as the maximum
recursion depth was exceeded.

What happened here? In trying to execute £(1) , our program called £(2) , which
then called £(3) , which called £(4) , and so on. This process will never end, but Python
is smart enough to eventually call it quits and warn you that your function is trying to
call itself too many times (thus giving us our RecursionError ).

Here’s an example of a recursive function that does work (at least some of the time).
Try to see if you can understand why.

def f(x):
if x ==
return 42
else:

return f(x + 1)

f(1) # evaluates to 42

§27 Monday, April 4

An administrative note: please organize into groups of size < 4 for the final project by
this Friday. This can be done under People/Groups on Canvas. Furthermore, there won’t
be any discussion sections next week or the following week due to the time off for Easter.
The TA’s will instead be holding office hours for homework and midterm prep during
their usual discussion times, and you can feel free to attend any of these office hours.

Lastly (and also due to Easter weekend), HW9 will be due on Wednesday of next week,
and it’ll be only 2 problems rather than the usual 4 or 5.

§27.1 Lists operations

Before diving into functional programming and dynamic programming, let’s briefly revisit
lists. Ome thing to note is that there are essentially two kinds of operations on lists:
those that are in-place and those that are not. More explicitly, there are operations that
change the list A on which they are called and those that return a different list without
altering A .

For instance, assignment is in-place, meaning the following code changes 1 itself.

81



CSCI 1101: Computer Science I Spring 2022

1=1[2,5, 3, 6, 7, 3, 4]
1[2] = 42
1 # evaluates to [2, 5, 42, 6, 7, 3, 4]

Slicing, meanwhile, is not in-place. Writing something like 1[2:5] would not change 1
but rather create another list entirely. This duality can be important to keep in mind
when writing programs with lists.

§27.2 Problem: sum of a list

Here’s a problem: given a list of integers, compute the sum of the entries in the list.
This is much easier than some of the problems you’'ve had to solve on the homework and
midterms, and you might even have an idea of how to solve it right off the top of your
head. In particular, we can just walk through the elements of 1 and add each of its
entries to an accumulator variable acc .

Let’s write that up.

def lsum1(l):
acc = 0
for i in range(len(l)):
acc += 1[i]

return acc

This is indeed a correct solution, but — just for the fun of it — let’s try to think about
other possible solutions. One technique we’ve seen is that of divide & conquer, which
certainly applies here. Let’s write up a divide and conquer solution using recursion.

def lsum2(1):

if 1 == []:
return O

else:
# Divide
v = 1[0]
subproblem = 1[1:]
# Solve subproblem "magically"
solved_subproblem = lsum2(subproblem)
# Conquer
answer = v + solved_subproblem
# Done

return answer

To really illustrate what’s going on here, let’s write out the steps of computation in

82



CSCI 1101: Computer Science I

Spring 2022

executing lsum2([2, 3, 4] .
1sum2([2,3,4]) =2
=2
=2

lsum2([3, 4])
(3 + 1sum2([4]))

3+ (4 +0))
(3 + 4)

N
N
+ 3+ 4+ Lsum2([D))
N
N
N

7

In fact, now that we’ve learned about recursion we can write up other divide & conquer
algorithms that we know and love. Insertion sort is a good place to start.

# 1 is already sorted
def insertion(v, 1):
if 1 == [1:
return [v]
elif 1[0] >= v:
return [v] + 1
else:
return 1[:1] + insertion(v, 1[1:])
def insertionSort(l):
if len(1l) <= 1:
return 1
else:
# Divide
v = 1[0]
subproblem = 1[1:]
# "Magic"
solved_subproblem = insertionSort(subproblem)
# Conquer
answer =

# Done

insertion(v, solved_suproblem)

return answer

To be clear, we’re being very verbose with comments and variables to make things as
clear as possible. In ‘real life’, you’d probably instead see something like this.

def insertionSort(l):
if len(l) <= 1:
return 1
else:

return insertion(1[0], insertionSort(1[1:]1))

83



CSCI 1101: Computer Science I Spring 2022

So, what’s the advantage of the recursive approach to solving algorithmic problems?
For starters, some people find this style of problem-solving/coding much easier than
other styles. In some countries, like France, this recursive approach to programming
is actually how students are taught from high-school. More abstractly, recursion often
makes seemingly intractable problems much more approachable.

A final point is that these kinds of recursive solutions can also make the parallelization
of a computational task across several devices much easier than other solutions. For
this reason, recursion is sometimes preferred in industrial applications where inputs to
programs can easily have billions of entries or more. (And perhaps most importantly,
understanding recursion will make you a stronger and more versatile computer scientist.)

§28 Wednesday, April 6

Once again, remember to join a group for the final project before Friday, under People/-
Groups on Canvas. Some more information about the midterm coming up: the goal is
for Part 2 of this midterm to be similar in difficulty to Part 1 of the previous midterm.
Also, we’re not going to ask you to implement a class on the midterm; we’ll instead allow
you to use the built-in implementations of lists, sets, dictionaries, etc. now that you
understand them.

Also, the goal is to finish covering all the midterm’s content today, so that we can
do some review over the next couple lectures and let you relax during the long Easter
weekend that’s coming up.

§28.1 Functional programming
§28.1.1 Map

Here’s a simple programming problem: the input is a list of integers, and the desired
output is the input list with all its entries incremented by 1. This is pretty simple
compared to what you’ve been doing on the homework, but let’s give it a shot.

def s1(1):

n =[]
for i in range(len(1l)):
n.append(1[i] + 1)

return n

Cool, that works. Now let’s say we want to solve a similar problem where we want
all the entries in the input list decremented by one. The solution will be so similar that
we’ll even violate a golden rule of programming by copying and pasting our code. Our
solution will look something like this:

def s2(1):

n =[]
for i in range(len(1)):
n.append(1[i] - 1)

return n

84



CSCI 1101: Computer Science I Spring 2022

(Note that we only had to change line 4.) We can think of many similar problems where

we actually square each entry of the input list, or double each entry, or multiply by -1,
etc. These are all pretty reasonable problems we might encounter in practice (even if
they’re not so profound or interesting), and it would be nice if we could solve all these
problems in one shot rather than copy/pasting.

Really, the blueprint of a such problem is that we have an input array A = [A[0], ...,A[n]]

and we want to replace it with A = [£(A[0]), ..., f(A[n])] for some function £Q) .

In this light, we could make our solution a bit more flexible.

def f£(x):

return x **x 2

def s3(1):
n =[]
for i in range(len(l)):
n.append(f(1[i]))

return n

That’s an improvement: we can change our function £() and immediately have our so-
lution s3() for replacing A = [A[0], ...,A[n]] with A = [£(A[0]), ..., £(A[n])].
But this is still imperfect, as £() can vary outside of our function s3() . What we
would really like is for £() itself to be a parameter of our solution function.

Is that legal in Python? Can a function accept another function as an argument?
Absolutely! We can write a function our solution like so.

def s4(f, 1):
n =[]
for i in range(len(l)):
n.append (f(1[i]))

return n

Now the function f() is passed directly as an argument to s4() , which serves as a
solution for all problems of the form “apply a function element-wise to the entries of a
list.” In fact, the function s4() we’ve just written is so important that it has a name in
computer science: map.

Now, to be a bit nitpicky, there’s still a hiccup in our solution. In order to actually
use s4() , we need to have an entire block of code for defining £() . It would be nice
if we could define a simple function like “add by 1” within a call to s4() itself. It
turns out that Python indeed supports this lightweight definition of functions by way of
anonymous functions.

An anonymous function is a function in Python that is defined on a single line without
being given a name (hence the anonymity). The syntax is as follows.

def map(f, 1):
n = []

for i in range(len(l)):

85



CSCI 1101: Computer Science I Spring 2022

n.append (f(1[i]))

return n

1= [1: 2, 3’ 4]
map(lambda x: x + 1, 1) # evaluates to [2, 3, 4, 5]

You could define a squaring function anonymously via lambda x: x**2 , a doubling
function anonymously via lambda x: 2 * x, and so on. Here’s a fun little exercise: let’s
define map() recursively.

def map(f, 1):
it 1= [l
return 1
else:
return [£(1[0)] + map(f, 1[1:1)

Nice, our recursive thinking is still good. Another thing to note is that map is so
important that it is built into Python itself! One warning is that, by default, Python’s
built-in map won’t actually give you a list back when you call it with arguments, due to
something called lazy evaluation. The details aren’t too important for now, but the key
takeaway is that you would need to write something like this in order to get a list from
map .

1= [1, 2, 3]
map(lambda x: x+1, 1) # won't give you a list!

list (map(lambda x: x+1, 1)) # gives you a list :)

§28.1.2 Filter

filter is a function that replaces a list with only those entries of the list that meet a
certain condition (e.g., those entries that are even). Now that we’re used to the idea of
functions accepting other functions as arguments, we can write a flexible implementation
for filter() from the get-go.

def filter(f, 1):
n =[]
for i in range(len(l)):
if £(A0):
n.append(1[il)

return n

filter(lambda x: x%2 == 0, [1,2,3,4]) # evaluates to [2, 4]

Once again, let’s implement filter() recursively to make sure we’ve still got it.

86



CSCI 1101: Computer Science I Spring 2022

def filter(f, 1):
if 1 == []:
return 1
if £(1[0]):
return [1[0]] + filter(f, 1[1:1)
return filter(f, 1[1:])

Awesome — we now have a flexible way of filtering elements from lists!

§28.1.3 Reduce

Here’s a problem: let’s say you give me a list of integers and I want to compute the sum
of all entries in the list, or maybe the product of all entries in the list. One observation is
that I compute this sum (or product) piece by piece, adding (or multiplying) each entry
in the list to a running total that I have. Also, this running total needs to be initialized
at some value before I add/multiply elements to it.

We can formalize this as follows.

def reduce(f, 1, ini):
# accumulator vartable set to an initial value
acc = ini
for i in range(len(1l)):
# update acc to account for entry l[i]
acc = f(acc, 1[il)

return acc

1=11, 2, 3]
reduce(lambda x, y: x + y, 1, 0) # evaluates to 6

Combining these tools — map, filter, and reduce — can produce very powerful programs
with only a few lines of code! Furthermore, anonymous functions make them easy to use
by defining a function as you call map, filter , or reduce. That’s it for today, and
that’s everything you need to know for the midterm!

8§29 Friday, April 8

§29.1 Midterm practice

Let’s warm up for the programming part of the midterm. It’s going to follow a relatively
similar format to the first midterm: you’ll receive an integer list A and an option
parameter M from standard input, and you’ll need to do some operation on A based on
the value of the parameter M. Let’s be a bit more concrete and say that if M=0 , your
program should test whether all the integers in A are even, if M=1 , your program should
test whether the sum of the integers in A is even, and if M=2 then it should test whether
the number of unique integers in A is even.
Let’s write up a skeleton of our solution.

87



CSCI 1101: Computer Science I Spring 2022

def read_input():
M = int(input())
# Read in the array as a single line of space-separated integers!
1 = list(map(int, input() .split()))
return (M, 1)

def write_output(b):
print (b)

def problemO(1):

return True

def probleml(1):

return True

def problem2(1l):

return True

def dispatch(M, 1):

if M == 0:
ans = problemO(1)
return ans

elif M ==
ans = probleml (1)
return ans

elif M == 2:
ans = problem2(1)

return ans

(M, 1) = read_input()
ans = dispatch(M, 1)

write_output (ans)

Please make sure you understand this blueprint for our solution. problem0, problemi ,
and problem2 are just created as stand-ins for now — they’re certainly not correct — but
they help us see the overall structure of our program. The programming portion of the
upcoming midterm will have a very similar structure to this problem, so it will really
payoff to understand this blueprint and even keep it handy for when the exam comes
around!

Okay, now let’s write some solutions. problem0(1) should determine whether 1 has
only even entries. We can solve this by simply iterating through each entry in 1 and
testing its even-ness or odd-ness.

88



CSCI 1101: Computer Science I Spring 2022

def problem0O(1):
for v in 1:
if v % 2 !'= 0:
return False

return True

Nice, that’s one solution. But there are many ways to bake a cake, and it’s a good
exercise to solve a given problem in more than one way. How can we solve this problem
using ideas from functional programming, including the filter function? Give this
some thought before looking at our solution below, and then make sure you understand

our solution!

def problem0O(1):
1l = filter(lambda x: x % 2 == 1, 1)

return len(l) ==

Now let’s tackle probleml() , which tests whether the sum of the entries in A is even.

def probleml(l):
acc = 0
for v in 1:
acc += v

return acc % 2 == 0

That looks a lot like an application of reduce, so let’s really follow throw and write
the functional programming solution. Unfortunately Python doesn’t come with reduce
built-in, so we’ll need to use an import statement.

from functools import reduce

def probleml(l):
s = reduce(lambda acc, v: acc + v, 1, 0)

return s % 2 ==

Just to reiterate: the input format we’ve discussed today is extremely similar to that of
the upcoming midterm. You will receive a non-empty integer list and an option argument
M, and your program will need to print a boolean value — True or False — depending
on M and the entries of the integer list. Also, you won’t need to implement any classes
or data structures on the midterm. You’ll be able to use Python’s built-in dict s, set s,
list s, etc. with freedom.

Furthermore, you’ll be able to solve the problems in any way you’d like: using divide
and conquer, using recursion, using something else, etc. And do make sure to keep
in mind all of the powerful data structures that you’ve learned about. For instance,
problem2() , of determining whether the number of unique integers in A is even, may

be a bit imposing at first, but it is fairly easy to solve using the power of set s.

89



CSCI 1101: Computer Science I Spring 2022

def problem2(1)

S = set()
for v in 1:
S.add(v)

return len(S) % 2 == 0

That’s it for today — enjoy the weekend!

8§30 Tuesday, April 19

§30.1 Final exam

The instructions for the final exam are out! You’ll be able to work in groups of size 1-4,
and you’ll have the option to solve LeetCode problems, work on creating a video game,
or to come up with an idea of your own and run it by the course staff. Today we’ll be
discussing some key ideas if you're interested in working on a larger project with a group,
and that are important for becoming a proficient Python programmer more generally.

§30.2 Modules

In creating larger and fancier Python projects, it becomes important to reuse previously
written code, as opposed to writing everything in a single Python file (as we’ve been
doing in our examples and homework thus far). For these larger projects, it becomes
important to ‘stand on the shoulders of giants’ so to speak, and to use code that you —
or others! — have previously written elsewhere.

A key tool here is the module, which is simply a single Python file, like AAA.py, with
code that you’d like to use in another Python file. The name of such a module would
simply be AAA — i.e., we drop the .py — and we would make use of it with an import
statement.

To make things a bit more concrete, let’s say that the body of AAA.py is like so.

def £(x):

return x + 1

And now let’s say we’re in another Python file called B.py, in which we want to use
£() without reinventing the wheel. We could write the following in B.py.

import AAA

print (AAA.£(45))

Then running B.py from the terminal would indeed produce the output we’d expect.

$ python3 B.py
46

90



CSCI 1101: Computer Science I Spring 2022

Now we know how to use code in other files without copying and pasting! That’s a
pretty big upgrade to our Python skills, but let’s also be careful about what exactly these
import statements are doing. Suppose we modify AAA.py like so.

print('Hello')

def f(x):

return x + 1

Then running B.py from the terminal will now do the following.

$ python3 B.py
Hello
46

The punchline is that Python runs AAA.py in its entirety when it executes import AAA !
This can be the source of some hard-to-catch errors if you’re not careful, so be sure to
keep it in mind. For this reason, there are many modules that really only exist in order
to support other Python files, i.e., to serve as a source of knowledge (via definitions of
functions, classes, etc.). These modules are known as libraries, and Python itself comes
with a host of standard libraries that we are already acquainted with, including math .

So, we’ve seen that we can import AAA via import AAA , after which we can call £()

via AAA.£() (so that Python knows which £() you are referring to). We also could
have imported £() itself from AAA via from AAA import f , after which we can refer to

£() as £(Q itself, rather than AAA.£() . Furthermore, we can give libraries nicknames,
or aliases, when we important them, as in import AAA as A .

As we saw earlier, there’s a bit of tension between having a Python file serve as a
library (i.e., a source of knowledge for other files to import from) and a script (i.e., as a
file to be run from the terminal itself). There is a way to get the best of both worlds,
though, using the conditional expression == "__main__" . For instance, rather

_name_ _ —
than writing

print('Hello')

def f(x):

return x + 1

we would instead write:

def f(x):

return x + 1

if __name__ == "__main__":

print('Hello')

91



CSCI 1101: Computer Science I Spring 2022

What the point? Importing AAA.py, as defined immediately above, would not result in
anything being printed, but running AAA.py from the terminal would result in 'Hello'
being printed. Simply put, __name__ == "__main__" evaluates to True when the file is
being run directly from the terminal (i.e., used as a script) but not when the file is being
imported (i.e., used as a library).

§30.3 Packages

A directory full of libraries (i.e., a folder full of Python files that serve as a source of
functions, classes, etc.) is known as a package. One of the great features of Python
is that it has tons of extremely useful packages! A great package for plotting data is
matplotlib , a package for statistics is scipy , for data analysis is pandas , etc.

Furthermore, Python has some nice package managers for organizing the packages that
you use: perhaps the two most famous are pip and conda.

Remark 30.1. You should only use one of pip or conda! Using both will mean you have
packages installed twice, can’t keep track of which version Python is using, etc. As a rule of
thumb, if you're on MacOS or Linux you should probably use pip, while Windows users can
use conda.

Once you have pip, you can install a package like matplotlib from the terminal via:

$ pip install matplotlib

§30.4 Version control

For those of you who will be working on a video game with others for the final project,
getting familiar with version control will be crucial. Namely, version control allows you
to keep track of how you and your collaborators work on a shared set of files. Without
this, it becomes nearly impossible to keep updated copies of Python files as you and all
your collaborators work on different pieces of it.

Probably the most important and well-known version control system is that of git,
which you can interact with using the website github. (You've already seen a bit
of github, as we ourselves use it to make the homework assignments!) The only key
terminal commands you’ll need to know are $ git clone, $ git pull, $ git commit ,

and $ git push . We don’t have enough time to go over all the details today, but the
TA’s will be going over github during this week’s discussion sections.

To conclude, there are two key takeaways for those working on joint projects for the
final: be sure to use modules, and be sure to use version control!

§31 Monday, April 25
§31.1 Pygame

As we’ve mentioned, we’ll spend the tail end of the course talking about developing
larger projects in Python, with a special focus on video games. Making a video game
from scratch would be extremely hard (and unnecessary!), so let’s look for some helpeful
libraries in the hopes of ‘standing on the shoulders of giants’, so to speak.

With some googling, you can discover that one of the key packages for developing video
games in Python is pygame . With a bit more googling and reference to the package’s

92



CSCI 1101: Computer Science I Spring 2022

documentation, we can start getting our feet wet writing up some small games. To recap:
you’ll need to actually install the package using something like conda or pip. With pip,
you can write something like

$ pip install pygame

and you're ready to go! As we mentioned last time, another important part of developing
larger applications is code versioning. When working with others, code versioning is
absolutely crucial, and even when working alone it can be useful for keeping track
of previous code versions, sharing code across several of your own devices, etc. git
is probably the most popular such system, and you can make a new repository like
CS1Afternoon on the github.com website.

You can then clone the repository onto your computer via:

$ git clone git@github.com:your_username/CS1Afternoon.git

Now, let’s make a file test.py on our computer in the CS1Afternoon directory. We
can kick things off in test.py with a basic import statement.

import pygame

A quick aside on the difference between software and hardware in computers. A
computer’s hardware consists of the physical objects that are part of the computer,
which you can smash when you get angry. On the other hand, software corresponds to
non-physical aspects of computing: essentially, code itself. Furthermore, there’s some
language to describe the correspondence between software and hardware.'

Hardware | Software
screen display
speaker mixer
mouse cursor

Okay, now let’s keep writing in test.py. It’s important to know that we're doing lots
of googling in order to know what the appropriate function names in pygame are for our
goals. That’s an essential part of being a programmer, as no one can remember the exact
names of all these functions unless they really work with them every day.

import pygame

# Initialize a game

pygame.init ()

# Create a scene of 1400 by 800 pizels
scene = pygame.display.set_mode((1400, 800))

16This will come up later when we use a mixer library to have our video game play music.

93



CSCI 1101: Computer Science I Spring 2022

# Fill the scene with green pizels
scene.fil1([0, 153, 0])

# Update the display to account for our new, green scene

pygame .display.update()

Now let’s run test.py from the terminal.

$ python test.py

Uh oh, it doesn’t look like anything happened - we’re not seeing a green scene! The
reason why is that our computer is so fast, it actually displays the green scene for an
instant, finishes running the script, and closes everything.

In order to get around this, we need to learn about events in pygame . Simply put, an
event is when something takes place in a program, such as a user pressing a key, clicking
somewhere on the display, etc.

import pygame

# Initialize a game

pygame.init ()

# Create a scene of 1400 by 800 pizels
scene = pygame.display.set_mode((1400, 800))

while True:
# Iterate through events
for event in pygame.event.get():

pass

# Fill the scene with green pizels
scene.fill ([0, 153, 0])

# Update the display to account for our new, green scene

pygame.display.update ()

Okay, now test.py will display the green scene when we run it from the terminal, but
it won’t actually stop doing so. We can kill it with prejudice by running Ctrl + c on
the terminal, but that’s not really the best way to do things. Let’s update our program
so that we have the option to quit it by using a special event.

import pygame

94



CSCI 1101: Computer Science I Spring 2022

# Initialize a game

pygame.init ()

# Create a scene of 1400 by 800 pizels
scene = pygame.display.set_mode((1400, 800))

running = True

while running:

# Iterate through events

for event in pygame.event.get():
# Notice quit events!
if event.type == pygame.QUIT:

running = False

# Fill the scene with green pizels
scene.fil11([0, 153, 0])

# Update the display to account for our new, green scene

pygame.display.update ()

Nice, now our program displays the scene and will terminate when we want it to. We can
make things even nicer by changing the caption of the display our program produces, with
pygame.display.set_caption() , and by adding music with pygame.mixer.music.load() .
Our new, fancier program looks like this.

import pygame

pygame.init ()

# Create scene, with nice caption

scene = pygame.display.set_mode((1400, 800))
pygame.display.set_caption('My new caption!')
# Play music we downloaded earlier

pygame .mixer .music.load('music.mp3"')

pygame .mixer .music.play()

running = True

while running:

for event in pygame.event.get():

95



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

CSCI 1101: Computer Science I Spring 2022

if event.type == pygame.QUIT:

running = False

scene.fill1 ([0, 153, 0])
pygame.display.update()

Now that we’ve added music, let’s add some images. As you may have expected, this is
possible with functions from pygame.image , along with some .png files we downloaded
previously.

import pygame

pygame.init ()

scene = pygame.display.set_mode((1400, 800))
pygame .display.set_caption('My new caption!')

pygame.mixer.music.load('music.mp3"')

pygame .mixer.music.play()

# Load our logo and get it's frame (or rectangle)
logo = pygame.image.load('logo.png')
logo_frame = logo.get_rect()

running = True

while running:

for event in pygame.event.get():
if event.type == pygame.QUIT:

running = False
# Put log in the scene
scene.blit(logo, logo_frame)

scene.fill ([0, 153, 0])

pygame.display.update()

But when we run this, we don’t see the logo! What’s going wrong here? Well, first we
place our logo in the scene, and then we fill the entirety of our screen with green. So
we're simply painting over the logo! If we swap lines 23 and 24 in the above script, then
we get the desired behavior.

So, we’ve achieved a lot in the last 45 minutes! Now it’s time to push our work to the
repository, so that it’s actually saved in the code versioning system. This can be done
from the terminal like so.

$ git add test.py

96



CSCI 1101: Computer Science I Spring 2022

$ git commit -m "Work from the afternoon"

$ git push

And, at the risk of being repetitive, please keep in mind that larger projects also
require some structure (rather than writing a bunch of functions in a row in a Python
file). This is where classes and the principles of object-oriented programming can be
extremely useful! You know lots of powerful tools — be sure to use them!

8§32 Wednesday, April 27

§32.1 Solitaire

We’ve talked a bit about object-oriented programming (OOP), but it might be worth
speaking more about the philosophy of the paradigm. The key idea is that we live in a
world of objects, where each object has attributes and methods. Roughly speaking, the
attributes describe the data embedded in our object, and the methods describe the kind
of actions that we can take with — or on — our object. So, at a high level, a class is like a
user-defined type, with data and functionality on that data wrapped into one.

Now, how does this help us organize or develop applications? Let’s think about the
game Solitaire, sometimes called Klondike, to begin with. It may not be so clear, at a
first glance, where OOP comes into the picture when developing such a game. But let’s
take things one step at a time: what are the objects that live in our application and
interact with each other? Well, one object might be the table: all the cards live on it.
Another one, perhaps the most important one, is the card itself! Each card in this game
can be considered as an object, and so — before sketching all the details of our application
— we can start thinking about the class for storing cards. What data should it hold, and
what functionality should be supported on such data?

§32.1.1 The card object

Let’s really get our hands dirty: in developing our class for cards, what attributes should
we endow the class with? Well, a card is fundamentally determined by two pieces of
information: suit and rank. We might also want to have an attribute for storing whether
a card is currently face-down or face-up in the game. For displaying the card in the game,
we would also want to know its shape and size, along with the print that the card has on
the front and back, and so on.

Now, what about methods? Well, we should start by thinking about the actions that
we can perform on a card in real life. We can move a card in space, flip it face-up or
face-down, etc. Okay, let’s start writing the code to support this kind of functionality, in
a library that other files can import from.

class Card:
def __init__(self, suit, rank):

self.suit = suit

self.rank rank
self.faceup = True

self.held = False

97



CSCI 1101: Computer Science I Spring 2022

# Use previously downloaded images for front & back of card

front = pygame.image.load('./img/cards/' + rank + '_of_' \
+ suit + '.png')

self.front = front

back = pygame.image.load('./img/back-side.png')

self.back = back

# Place the card at the cursor

self.location = self.front.get_rect()

Now let’s think of a couple problems to solve. We might want code that can implement
some of the following functionalities.

1. Place a card on the table.

2. Move the card when it is clicked.

3. Flip the card when double-clicked.

To place a card on the table, or to stage it, so to speak, we need to write some more
code.

# New method for the Card class
def stage(self, scene):
if self.faceup:
scene.blit(self.front, self.location)
else:

scene.blit(self.back, self.location)

Our code is working great, but the images that we’re using for the cards are a bit big.
With some googling, we find that Pygame has its own functions for rescaling images. We
_init__ like so.

can update

def __init__(self, suit, rank):

self.suit = suit

self.rank = rank
self.faceup = True

self.held = False

# Use previously downloaded images for front & back of card

front = pygame.image.load('./img/cards/' + rank + '_of_' \
+ suit + '.png')

back = pygame.image.load('./img/back-side.png')

# Rescale the images

front = pygame.transform.smoothscale(front, (140, 200))

98



CSCI 1101: Computer Science I Spring 2022

back = pygame.transform.smoothscale(front, (140, 200))
self.front = front
self.back = back

# Place the card at the cursor

self .location = self.front.get_rect()

We also want to do certain things when a card is being clicked or even touched by a
cursor, so we’ll need a method for detecting how a card is touched by a cursor.

# New method for the Card class
def touched(self, pos):

return self.location.collidepoint (pos)

We’ve run out of time today, but we’ll keep running with these ideas on Friday and
work on some fun functionality for clicking and dragging our cards. Like last time, we’ll
commit and push our work so it’s stored in our repo!

833 Friday, April 29

§33.1 Solitaire, continued

Last time we were writing up a solitaire game, and we mentioned that it’d be nice to
be able to click and drag the cards on the table. In order to do so, we need to have a
handle on when the cursor clicks on a card, when it drags, and when it stops clicking.
We’ll write a react() method for our Card class to handle each of these three events.

# New method for our Card class
def react(self, event):
if event.type == pygame.MOUSEBUTTONDOWN:
pass
elif event.type == pygame.MOUSEBUTTONUP:
pass
elif event.type == pygame.MOUSEMOTION:

pass

Okay, there’s the skeleton of our new method for implementing how a card ‘reacts’ to
the cursor’s actions, so to speak. Let’s start filling things in.

# New method for our Card class
def react(self, event):
if event.type == pygame.MOUSEBUTTONDOWN:
if self.touched(event.pos):
self.held = True

99



CSCI 1101: Computer Science I Spring 2022

elif event.type == pygame.MOUSEBUTTONUP:
if self.touched(event.pos):
self .held = False

elif event.type == pygame.MOUSEMOTION:
if self.held:

self.location.move_ip(event.rel)

We can test this out, and it indeed works! Great, we’ve added another feature to our
class (and indeed to our game). Next challenge: we want to add the functionality that a
card flips over on the table when double-clicked. We need to add this to our react()
method, and it will be slightly more challenging than our previous work, because pygame
does not have an event for a cursor’s double-click. (You may want the timing cutoff of a
double-click to be different in different games.) We will instead need to make use of an
internal clock that keeps track of when ticks take place.

Let’s add a clock paramter to react() and get things going.

# New method for our Card class
def react(self, event, clock):
if event.type == pygame.MOUSEBUTTONDOWN:
if self.touched(event.pos):
if clock.tick() < 500:

self.faceup = not self.faceup

else:
self.held = True

elif event.type == pygame.MOUSEBUTTONUP:
if self.touched(event.pos):
self.held = False

elif event.type == pygame.MOUSEMOTION:
if self.held:

self.location.move_ip(event.rel)

Okay, we now have a pretty good handle on the Card class. What other classes will
we need in the course of completing our Solitaire game? Well, one natural object that
arises in card games is that of a pile of cards. This could be a useful class to write up! If
we were to do so, what attributes and methods would we need?

For attributes, you would want to keep track of the list of cards that constitute the
pile, whether or not the top card in the pile is face-up, and the location of the pile of
cards on the table. As for methods, you might want to place (or push) a card on the pile,
to pop the topmost card from the pile, to shuffle the pile, to flip the topmost card on the
pile, etc. There’s really no limit to the attributes or methods we could conceivably add
here, but this list seems to have most of what we need.

100



CSCI 1101: Computer Science I Spring 2022

Let’s get started with the skeleton of our main function for working with piles.

import pygame

if __name__ == "__main__":
pygame.init ()
scene = pygame.display.set_mode([1400, 800])
pygame.display.set_caption("Testing code for piles")

running = True

while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:

running = False

scene.fill ([0, 153, 0])
pygame.display.update ()

Okay, now let’s starting writing up the class itself.

import pygame

from card import Card

class Pile:

def __init__(self, x, y):
self.stack = []
self.top_visible = False

# We're hard coding numbers here, which is bad!
# (But forgive us for now)
self.location = pygame.Rect(x, y, 140, 200)

Great, we've starting setting up the basics by writing a constructor for our class, with
attributes for the stack of the cards, the location, and whether the top card is visible or
not. Now we want to see our pile in the game’s display, and so we’ll need a stage()
method again.

def stage(self, scene):
if len(self.stack > 0):
self .stack[-1] .stage(scene)
else:

pygame.draw.rect(scene, [0, 53, 0], self.location)

101



CSCI 1101: Computer Science I Spring 2022

Great — a pile will appear as its topmost card if it has a card, or as a black sqaure if it
does not have any cards.'” We’ll finish up the game in the first half of lecture next time,
and we’ll stick around for any questions about the final project, studying CS at BC, or
anything else you’d like to talk about!

This will be the last lecture for which notes are taken, though, so we want to take the
opportunity to thank you for all your hard work this semester. You’ve learned a whole
lot over the last few months, and you should be really proud of yourself! Good luck with
your final projects, and have a wonderful summer!

"Tn python, arr[-1] returns the last entry of a non-empty list, while arr [-2] returns the penultimate
entry of a list with at least 2 entries, and so on. This is known as negative indexing, and it’s a nice
convenience!

102



Index

0-indexing, 18

algorithm, 5, 13

aliases, 91

amortized analysis, 69
analysis of algorithms, 29
anonymous functions, 85
append, 75

argument, 14

array, 34

array doubling, 68
asymptotics, 53
attributes, 71

big O notation, 53
binary search, 58
bind, 9

bool, 20
branching, 22
brute force, 41

call by value, 15
class, 71

collision, 78
composite type, 17
computer, 5
computer science, 5

data structure, 18, 63
data type, 63

debugging, 9

dictionary, 75

directory, 11

divide and conquer, 58, 60
dynamic errors, 40

elementary operations, 46
events, 94
expression, &8

filter, 86
for loop, 35
function, 14

git, 92
github, 92

hardware, 93
hash function, 78

103

hash table, 78

immutable, 34
import, 90
indexing, 18, 34
insertion sort, 58

libraries, 14, 91

linked data structures, 73
linked list, 67

list, 74

map, 85
merge sort, 60
methods, 71
module, 90
mutable, 34

package, 92
parameter, 14
pattern matching, 18
precedence, 8
primitive types, 8, 17

quadratic equation, 13

raising an error, 25
recursion, 58, 80
reduction, 57
roots, 13

scope, 15
semantics, 39
set, 75

slicing, 19
software, 93
sort, 35

stack, 63

static errors, 40
syntax, 39

terminal, 11
type, 8
variable, 9

version control, 92

while loop, 31
worst-case analysis, 51



	Wednesday, January 19
	What is computer science?
	History of computer science
	Course information

	Friday, January 21
	JupyterHub and primitive types
	Debugging
	Variables

	Monday, January 24
	Terminal basics
	Running Python from the terminal

	Wednesday, January 26
	Functions

	Friday, January 28
	Announcements
	Problem: sum of roots
	Tuples

	More operations

	Monday, January 31
	HW1 postmortem
	Booleans
	Conditional statements

	Wednesday, February 2
	Type checking
	JupyterHub
	Problem: maximum of 3 integers

	Friday, February 4
	Problem: maximum of 3 integers (continued)

	Monday, February 7
	Iteration
	Problem: multiple of 3 but not 11

	Wednesday, February 9
	HW2 postmortem
	Arrays
	For loops

	Friday, February 11
	Problem: find x, y, z

	Monday, February 14
	HW3 Postmortem
	Syntax
	Errors
	Semantics

	Wednesday, February 16
	Problem: pairwise sum

	Friday, February 18
	Problem: pairwise sum (continued)

	Monday, February 21
	Analysis of algorithms

	Wedneday, February 23
	Analysis of algorithms, continued

	Monday, February 28
	Analysis of algorithms, continued

	Monday, March 14
	Midterm postmortem
	Problem: 3Sum
	Leetcode
	Search problems
	Sorting

	Wednesday, March 16
	Insertion sort

	Friday, March 18
	Merge sort

	Monday, March 21
	Data structures and data types

	Wednesday, March 23
	The stack data type

	Friday, March 25
	Recap
	Object-oriented programming

	Monday, March 28
	Classes, continued
	More types!
	List
	Set
	Dictionary


	Wednesday, March 30
	Dictionary, continued

	Friday, April 1
	Problem: rings and rods
	Semantics

	Monday, April 4
	Lists operations
	Problem: sum of a list

	Wednesday, April 6
	Functional programming
	Map
	Filter
	Reduce


	Friday, April 8
	Midterm practice

	Tuesday, April 19
	Final exam
	Modules
	Packages
	Version control

	Monday, April 25
	Pygame

	Wednesday, April 27
	Solitaire
	The card object


	Friday, April 29
	Solitaire, continued

	Index

