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Welcome to 3340.01: Introduction to Machine Learning with Applications to Chemistry.
Here’s some important information:

• The course webpage is:
https://bostoncollege.instructure.com/courses/1625020

• Office hours are at the following times in Fulton 160:

– Dr. Tristan: 6-8pm on Tuesday

– Daniella: 12-2pm on Wednesday

– Jetta: 5-7pm on Wednesday

• Everyone needs to serve as scribe for at least one lecture. The sign-up sheet is
here.

• Relevant emails are {tristanj, chujx, zunicd, asilisj}@bc.edu. Email with
questions, comments, or concerns.

• These notes were taken by Julian and have not been carefully proofread –
they’re sure to contain some typos and omissions, due to Julian.
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§1 Tuesday, August 31

§1.1 What is machine learning?

We’re going to start by discussing what machine learning is and explaining why we think
it’s a good idea to approach the subject with applications (such as chemistry) in mind.

So, what is machine learning? There are a couple of perspectives:

1. The engine of artificial intelligence (AI).

• AI is a relatively old field, having commenced around the 50’s, but ML is
what’s really given it success in the last few decades.

• There’s a famous quote from Andrew Ng:

“AI is the new electricity. It will transform every industry and
create huge economic value. Technology like supervised learning is
automation on steroids. It is very good at automating tasks and will
have an impact on every sector – from healthcare to manufacturing,
logistics and retail.”

2. A significant source of sometimes meaningful, high paying jobs (somewhat more
cynically).

3. A genuine source of technological and scientific innovation.

• Recently, we’ve seen DeepMind’s AI make advances in protein folding problems
and defeat Go champions.

4. And (hopefully) ridiculous hype.

• Elon Musk:

“With AI, we are summoning the demon.”

All of this helps us see that ML is a pretty big deal, but it doesn’t tell us much about
what it actually is. Ultimately, machine learning is an interdisciplinary science combining
computer science (via algorithms) and statistics (via data, often randomly generated).
Let’s make things a bit more concrete by looking at an example.

Example 1.1

Consider the problem of filtering email for spam. Nowadays, services like Gmail do
the work for you, but a few decades ago it was a real problem. We can think about
two approaches to filter email for spam:

1. Write an algorithm with lots of explicit rules (e.g., if the email contains the
phrase ‘amazing opportunity’ or ‘essential oils’, file it as spam).

2. Have a learning algorithm which takes in many examples of emails labeled as
spam and not-spam and produces its own rule for filtering.

The second approach turns out to be much more fruitful than the first. It might
be hard to see how it would actually be implemented, but hopefully you can see why
the first approach wouldn’t work very well. It’d be extremely hard to exhaustively
list all the rules defining spam without going overboard.
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In classical computer science, the problem setup is to – for instance – take in a list of
integers and output a list of sorted integers. In machine learning, the problem would be
to take in a collection of integer lists with sorted copies, and to output a rule for sorting
lists.

Returning to our previous example, imagine that there is a perfect spam filter f that
maps an email to 1 if it is spam and 0 otherwise. Given sample data, i.e. a list of example
emails with labels of 0 and 1, we’d like to output rule for predicting whether an email
(without unknown label!) has label 0 or 1. The goal would be to have our rule behave as
much as possible like the unknown function f .

Let’s generalize this. In machine learning, the problem setting is defined by a universe
X of features (e.g. possible emails) and Y of labels (e.g. {spam, not spam}, or {0, 1}).
One is given a data set D ⊆X ×Y generated by some target function f ∶X → Y , and the
goal is to use D to output a prediction function as close to f as possible. That was very
fast, but the goal was to give you a flavor of what machine learning is.

§1.2 Why focus on chemistry?

If you’re any kind of natural scientist, it’s useful to gain exposure to ML because it’s an
increasingly important part of scientific research. If you’re a computer scientist, looking
at applications of ML to chemistry/natural science gives you a great source of interesting
problems and data sets, and you may find it more meaningful than working on problems
in ad placement, for instance.

One curious thing that sometimes happens in chemistry and physics is that we have a
perfect mathematical description of a system’s behavior via an equation, but the equation
is far too difficult to actually solve. In this kind of setting, you can see how machine
learning might be of help. At a high level, combining ML and physics has lots of potential
in science & tech.

§1.3 Course structure

We’ll be thinking of this as a three part course.

1. Use ML models to learn from experimental data

• We’ll learn the fundamental of machine learning: bias-variance trade-off, the
no free lunch theorem, etc.

2. Create data and bespoke ML models

• Dive into linear regression

• Graph Neural Networks

3. Combine ML and quantum chemistry to solve the Schrodinger equation

• Look at Gaussian processes

See the syllabus on canvas for details on the course staff, the schedule of office hours,
etc.

§2 Thursday, September 2

As I mentioned last time, the 4th homework will be larger/more significant and will
concern predicting the solubility of molecules. The data set for that assignment is
AqSolDb, and it might be worth giving it a look in the next few weeks. Anyway, today,
I’ll cover the machinery that you’ll need to solve the first homework.
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§2.1 Key libraries

There are four libraries that you should know about:

1. pandas (for analyzing data)

2. matplotlib (for plotting data)

3. RDKit (chemistry/machine learning)

4. mordred (wrapper around RDKIT)

It won’t be necessary to go particularly deep into any of these libraries, and I’ll try to
cover all the major commands/ideas in each library.

So, the name of the game is to predict a molecule’s solubility, which is the amount
amount of the molecule that can dissolve into a given solvent (in our case, usually water).
In order to use molecules in a machine learning algorithm, we need to represent the
molecule in a format that the machine can understanding (e.g. as a string, graph, etc.).
One of the most popular such methods is SMILE, which represents a molecule as a string.
We won’t dive into the details of SMILE, but it’s our first example of a representation,
and it also introduces some questions concerning feature engineering.

For instance, the energy of a molecule is invariant to rotation and translation of the
molecule. So, when predicting molecules’ energies, it would be ideal to use a representation
which is invariant with respect to each of those transformations. That’s a challenging
problem in feature engineering – i.e., how objects are formatted to a machine learning
algorithm – and it’s of great practical importance.

For the rest of the class, we walked through examples of using these packages - bit
thorny to write it all down here :/

§3 Tuesday, September 7

We’re going to talk about lots of big ideas in machine learning today. We’ll also be
talking about matrices, and we’ll often be thinking of their rows as points (or vectors) in
n-dimensional space. The numpy and pandas packages have lots of built-in functionality
for handling matrices.

§3.1 True and empirical risk

Let’s say we have a collection of points {(xi, f(xi)}i∈[n] generated from some curve f .
We’d like to deduce from these points a curve as ‘close’ to f as possible. In fact, this
is precisely the notion of generalization – using the data to create a function h which
mimics function f as closely as possible everywhere, not just at the {xi}.

How do we formalize the notion of proximity in this context, i.e. what does it mean
for h to be close to f? There are a couple of reasonable choices for our true risk L, like

Lf(h) = ∫
∞

−∞
∣h(x) − f(x)∣dx or Lf(h) = ∫

∞

−∞
(h(x) − f(x))2dx.

The issue here is that we can’t compute Lf , since we don’t actually know what f
is (that’s the whole point!). One natural proxy for the relative behaviors of f and h
everywhere is their relative behaviors on the sample points {xi}. That’s known as the
empirical risk, and it’s formalized as follows:

L̂f(h) =
1

n

n

∑
i=1

(h(xi) − f(xi))2.
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Make sure to keep in mind the intuition here – L measures how closely h mimics f on
all of R, while L̂ measures how closely h mimics f on the {xi}. Another important part
of the picture in machine learning is the hypothesis class H, which is the collection
of candidate functions h that we can use to guess f . In particular, we restrict focus
to a collection of functions H at the outset, for the sake of making our problem more
tractable, for expressing some prior belief about the function f , etc. In the case of linear
regression, H will consist of linear functions, so the name of the game is to find a line (or
hyperplane) that mimics f as closely as possible.

Remark 3.1. If the label set Y equals {0,1}, then the learning problem is one of binary
classification. If it’s {0,1, . . . , n}, then it’s multi-class classification. If it’s R, then the
problem is regression.

§3.2 Underfitting and overfitting

The restriction to hypotheses in H can be a useful way to express prior knowledge, but
it can also leave you somewhat powerless (e.g. if H consists of linear functions and f
is a degree 10 polynomial). This is referred to as underfitting, and it tends to result
in high levels of both true and empirical risk. It’s worth noting here, though, that even
linear regression can be extremely powerful when you perform clever feature engineering.

One the other hand, if H allows for perverse functions, then you can end up with a
function h that simply memorizes all the points {(xi, f(xi)} and outputs 0 everywhere
else, for instance. This phenomenon, of fitting the noise in the sample and generalizing
poorly, is known as overfitting. On the ground, it’s something of a tug of war between
underfitting and overfitting – you can run into issues when H is too powerful as well as
when it’s too weak. This issue is known as the bias-complexity tradeoff. It actually
has a precise (though trivial) mathematical formulation:

Lf(h) = min
h∈H
Lf(h)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Approximation error

+ (L(h) −min
h∈H
Lf(h))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Estimation error

.

The key takeaway here is that the approximation error decreases as H gets larger, but
the estimation error increases in turn, since it’s harder (i.e. requires more data) to single
out the best hypothesis in H. In English: increasing the size of H is a double-edged
sword.

§4 Thursday, September 9

§4.1 Probability distributions

There’s lots more ground to cover regarding the big ideas in ML. As we mentioned last
time, there general setup is that an unknown function f ∶ X → Y which generates our
data set {(xi, yi) ∣ xi ∈ X,yi = f(xi)}. The goal is to ‘guess’ the function f from that
data set.

We introduced notions of true risk Lf for measuring how closely a candidate function
h mimics f . More explicitly, we considered

Lf(h) = ∫
∞

−∞
∣h(x) − f(x)∣dx and Lf(h) = ∫

∞

−∞
(h(x) − f(x))2dx.

These are both pretty reasonable candidates for true risk (can you see why?), but it
turns that we’d like something more sophisticated. In particular, we may to weight the

8
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performance of h relative to f more greatly on certain regions of the domain X than
others. For instance, the failure (or even success) of h on regions of X that are very
rarely witnessed in practice shouldn’t matter very much. One way to formalize this is to
introduce a probability distribution D on X , and to define

Lf,D(h) = E[(h(x) − f(x))2]

where the expectation on the right hand side is taken over D. Now that probability is
coming into play, it’ll be useful to have some inequalities in our toolkit. One important
one is Hoeffding’s inequality.

Lemma 4.1 (Hoeffding’s inequality)

Let Θ1, . . . ,Θn be i.i.d. random variables with E(Θi) = µ and P(Θi ∈ [a, b]) = 1.
Then

P(∣ 1
n

n

∑
i=1

Θi − µ∣ > ε) ≤ 2e−nε
2/(b−a)2 .

In English, the inequality is telling us about how closely the sample mean of the Θi tends
to approximate their true mean µ. One crucial application of the inequality is that it
helps us describe how quickly empirical risk comes to approximate true risk. Crucially,
empirical risk becomes a greater estimator of true risk as sample size increases but suffers
as ∣H∣ increases. This takes us back to the bias-variance trade-off we were discussing
earlier.

§4.2 Model validation

Here’s a question: after picking a model, how can we measure its performance to make
sure we didn’t go wrong? One important observation is that we can’t just see how it
performs on the data that we trained with. Simply put, this is cheating: we’re testing the
model with the data we already used to construct it (i.e. with the data whose behavior
is already ‘baked into’ the parameters/structure of that model).

Fortunately, there’s a relatively simply solution you may have heard of: split the data
into a training set and a test set. As their names suggest, the training set is used to pick
a model (perhaps via empirical risk minimization), and the test set is used to give it an
honest evaluation of its performance.

One important visual tool for contrasting the training and testing losses is the valida-
tion curve, which plots those losses with respect to the choice of model. If the training
loss is high, that’s usually a sign of underfitting; if testing loss is very high (relative to
training loss), that’s often a sign of overfitting. A similar tool for examining the effect of
data quantity is the learning curve – it plots the training and test loss of a particular
model with respect to the size of the data set.

§5 Tuesday, September 14

§5.1 Cross-validation

Last week, we talked about the importance of splitting the data into two groups – the
testing and training data sets. In particular, it’s bankrupt to assess your model using
the data that you used to train it, as it’s already seen that data before.

In reality, this idea is often taken even further, though. It’s difficult to have a test set
that’s big enough to be meaningful without detracting from the precious training set.

9
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One solution for this quandary is cross-validation. Rather than splitting the data into
testing and training tests, we split it into k many folds. For now, say we have 5 folds.
Then we can train the data on folds {1,2,3,4} and test it on the 5th fold. We can also
train on {1, 2, 3, 5} and test on fold 4. By doing this k = 5 many times, we can get much
more information than a mere training/testing split.

Remark 5.1. There’s an important warning here: if you use cross-validation on your data
set to pick parameters/build your model, then you can’t use any of that data to evaluate
your model’s performance. Your model has already seen the data, so it’s bankrupt to then
test it using that data.

§5.2 Occam’s razor

We’ve been talking about empirical risk minimization, i.e. the rule of picking a hypothesis
h from a class H which minimizes empirical risk on the provided data set. Generally
speaking, there’s no reason for this h to be unique – there may be a variety of hypotheses
hi1 , . . . , hiN attaining an empirical risk of zero, for instance. In this setting, we’d like
some criterion for breaking ties.

The idea that shows up is Occam’s razor, which says that we should give preference
to the simplest candidate hypothesis in the above case. Philosophically, if two theories
explain some evidence equally well, then we should prefer the simpler one.

Example 5.2

Say two polynomials f, g fit our data equally well, and deg(f) = 3 while deg(g) = 5.
Then Occam’s razor says we should prefer f , as it’s the simpler explanation. Perhaps
more realistically, say polynomials of degree 3 and higher (including polynomials
of arbitrarily high degree) can fit our data. Then we should select a polynomial of
degree 3.

§5.3 Structural risk minimization

Occam’s razor is nice, but it only applies in the case of perfect ties in empirical risk. If
we have some prejudice against polynomials of high degree (for instance), then really
we should bake that into our loss function. In particular, rather than minimizing
1
n ∑(h(xi)−yi)2, it may be more sensible to minimize 1

n ∑(h(xi)−yi)2+c(h), where c(h)
is a measure of the ‘complexity’ of h.

In this way, we’re constantly expressing our preference for simpler hypotheses. The
paradigm of minimizing this new quantity (with the c(h) term) is known as structural
risk minimization. Note that it’s just the analogue of empirical risk minimization in
the case where we punish complicated hypotheses using c(h).

§5.4 Stability

One idea to be aware of is a learner’s stability, i.e. its sensitivity to the training data.
A highly unstable learner can output a considerably different hypothesis when a single
point is added or removed from its training data, for instance. A stable learner, on the
other hand, won’t change its predictions all that much given a small change in its training
data.

Stability and generalization tend to go hand in hand, i.e. unstable learners tend to
overfit/generalize poorly, while stable learners have a better shot at generalizing well. So
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the stability idea gives us another form of bias when breaking ties between hypotheses.
This gives rise to Tikhonov regularization, which – in the case of polynomials – tells
us to favor polynomials with low weights (i.e. coefficients). This is really just a particular
instance of structural risk minimization, in which the complexity function c(–) equals
(for instance) the sum of a polynomial’s squared coefficients.

§5.5 Regression

Ordinary linear regression is just an ERM (empirical risk minimization) learner over the
hypothesis class of linear functions. By introducing the Tikhonov regularization term
(i.e. adding the sum of squared weights to the empirical risk), you arrive at what’s called
ridge regression. If you used the absolute sum of weights, rather than squared sum, in
the complexity penalization term, you’d get lasso regression. By adding both of those
regularization functions, you get elastic net regression.

§6 Thursday, September 16

Couple key topics to cover today:

• Curse of dimensionality

• Blessing of dimensionality

• Principal component analysis (PCA)

After today’s lecture, we’ll have covered everything that will be tested on the midterm.
Let’s go.

§6.1 Curse (and blessing!) of dimensionality

When we refer to dimensionality today, we’ll mean the dimension of the space in which
our features live. It’s importance to distinguish this from the size (number of observations)
in our dataset. For instance, if a feature in our dataset is a tuple of 3 numbers, then the
dimensionality is 3, regarldess of whether our dataset has size 3, 10, or 10 million.

So why can dimensionality be a curse? At first glance, it might seem like more feature
dimensions are always better – after all, features are the ingredients we can use to
predict labels, meaning richer/higher-dimensional features should give us a better shot at
guessing labels. One reason why dimensionality can be a curse is that high-dimensional
spaces like Rn (for large n) can have strange geometric properties.

Example 6.1

The volume of a unit sphere in Rn decreases as n increases. In particular, as you go
into higher dimensions, the unit sphere occupies an arbitrarily small percentage of
the unit cube.

So geometric intuition tends to fail in high dimensions, and you need to be careful
when analyzing your data. On the other hand, dimensionality can have its benefits. For
instance, it’s easier to separate collections of points using planes in higher-dimensional
space than in lower-dimensional space. This is formalized in part by Cover’s theorem.

Next we’ll talk about PCA, but before that, a lemma.

11
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Lemma 6.2 (Johnson-Lindenstrauss)

For any ε ∈ (0,1), dataset X of m points in RN , and number n > 8 log(m)/e2, there
exists a linear map f ∶ RN → Rn with the following property:

(1 − ε)∣∣u − v∣∣2 ≤ ∣∣f(u) − f(v)∣∣2 ≤ (1 + ε)∣∣u − v∣∣2 for all u, v ∈X.

In English, the lemma tells us that data points can always be mapped linearly to
high-dimensional space in a way that almost preserves distances.

§6.2 Principal Component Analysis (PCA)

PCA is a famous tool in dimensionality reduction, meaning it compresses the infor-
mation of high-dimensional features into a lower-dimensional form. We’re not going to
go deep into the math of it right now, but the idea is that it picks a few orthogonal
vectors in the feature space that capture the most variance/information in the features.
Those vectors are known as the principal components, and they describe as much of
the dataset’s variance as possible.

When principal components start explaining very little of the data’s variance, that’s a
sign that you’ve extracted most of the information from your data and don’t need any
more of its dimensions.

§7 Tuesday, September 21

§7.1 From shallow to deep learning

We’re going to transition to deep learning from the kinds of method’s we’ve discussed so
far, which you might call shallow machine learning. In particular, the learning processes
we’ve considered have consisted of two primary steps:

1. Featurization: turning some objects into a representation that computers can
handle (e.g., SMILES for molecules). There are several kinds of features you can
work with:

– OD Features (e.g., for molecules, number of atoms of each type, number of
bonds of each type, etc.)

– 1D Features (e.g., number of rings of some type (length, aromaticity))

– 2D Features (e.g. Wiener index, Zagreb index, adjacency matrix)

– 3D Features (e.g. surface area, moment of inertia, geometrical index, gravita-
tional index, MORSE).

– ‘Bespoke features’ (e.g. Lipinski’s rule of 5, FilterItLogS).

– Electronic features: electronic properties of molecules can be obtained as
perturbations of external electric/magnetic field, nuclear/electron spin, and
geometry. (e.g., Dipole moment (1st derivative for electric field perturbation),
Harmonic vibrational frequencies (2nd derivative for geometric perturbation)).

– Thermodynamic features: can be estimated using the Boltzmann distribution
(reaction rates, protein-ligand affinity, solubility).

2. Use an explicit learning algorithm (e.g., ERM over a hypothesis class).

12
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An issue with featurization is that it can destroy information about the object you
began with – for instance, structural isomers can be indistinguishable under 0D and 1D
featurizations. In addition, as features get more sophisticated, they can get more powerful
but also demand more domain expertise, become increasingly expensive/approximate,
etc.

Figure 1: Isomers for a given molecular formula, from here.

Remark 7.1. The Born-Oppenheimer potential energy surface (PES) calculates a
molecule’s energy as a function of its state/geometry. Often in chemistry one wants to find
the geometry that minimizes a molecule’s energy. This amounts to locating a minimum of
the PES, but an issue is that there may be several local minima which are not global minima.

The alternative to what we’ve been calling ‘shallow learning’ is a modern method known
as deep learning. Informally, it can take away lots of the trouble of featurization/needing
domain-specific knowledge when performing machine learning. Instead, deep learning
can use large amounts of raw data without any guidance to then construct a model
which performs remarkably well. And, in fact, traditional models (e.g. physics-based
or chemistry-based) can sometimes be used to help generate the large amounts of data
required by these deep learners. In setting like video game playing, you can even have
the model play against itself (at high speeds) in order to generate data and learn from
experience!

§8 Midterm Review

Quick administrative note: we’re moving the midterm back to next Thursday (Sept 30),
and next Tuesday will instead be a linear algebra review.

§8.1 Useful coding tools

Recall that if A is a tensor/matrix, then you can get it’s shape using A.shape and display
A in a Jupyter notebook by simply writing A in its own cell.

Indexing and slicing are crucial tools when operating with arrays. For instance, A[4,3]
will fetch the value in the 4th row and 3rd column of A, while A[:,3] will fetch the
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entirety of the 3rd column (: is similar to ‘give me everything’). To compress all of A to
a single number, you can write A.sum() to get the sum of all of its entries. Alternatively,
to get the sums over each of its rows, you can write A.sum(axis=1).

Remark 8.1. Professor Tristan is sharing a Jupyter notebook with all of these coding
examples, as well as links to pages describing many of the most important tools that will be
covered on the midterm.

Quick overview of some key topics we’ll expect you to know about on Thursday (not
exhaustive!):

• Pre-processing (e.g. PolynomialFeatures)

• Model validation and selection

– Expect questions about this!

• Models (e.g. DummyRegressor, linear regression (including Ridge))

• Plotting (e.g. plot, scatter)

• Numpy (e.g. creating tensors, indexing, array manipulation, mathematical func-
tions)

• Definitions of key terms (check the Jupyter notebook for a long list)

§8.2 Key concepts

There are several central concepts we’ve been stressing over the past couple weeks:

• Validation: in order to get a real sense of the efficacy of your model, you need
testing data that your model was not trained on/has not seen.

• Now say you’re going to have several models competing. Then you don’t want to
test all of your 20 models on the testing data because it’s a recipe for overfitting
(i.e., picking the model that performs well on the testing set by pure luck, and
whose performance you overestimate).

So you need a training set to train all your models, a validation set to test all of
them and pick your favorite, and then a testing set to get a fair assessment of that
model’s accuracy.

• There’s an even higher level to this idea, which is cross validation. You split
your training data into k folds, and then use the ith fold as the testing data (and
everything else as the training data) for all 1 ≤ i ≤ k. So this is like a classic
training/testing split you perform k many times, with training data that varies
over your whole data set (GridSearchCV helps take care of all this work). Then
you can test your final model on the testing data you originally set aside, which
you’ve never touched.

§9 Tuesday, October 5

The content of the class is going to change quite a bit now. So far we’ve been thinking
about data science and the big picture of machine learning. Now we’ll get deeper into
the details of training learners. Understanding the training process – beginning with
linear regression – will be crucial as we get to fancier methods like neural networks.
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§9.1 Arg maxes

First a quick intro on arg mins and arg maxes, which will be useful today: for a function
f ∶X → R, arg minx f(x) denotes the set of inputs x ∈X attaining the minimal value of
f(x) over all of X. Note that in general, arg mins may be empty (e.g., for the identity
function on (0,1) ⊆ R) or may be a set of size far greater than one (e.g., for a constant
function x↦ 3). We will usually consider – or assume – functions with non-empty arg
mins. An analogous definition and remark holds for arg maxes.

Lemma 9.1

Let X be a set and f ∶X → R a function. Then the following hold:

1. arg minx f = −arg min(−f), where (−f)∶X → R is defined by x↦ −(f(x)).

2. arg minx(cf) = arg minx f for all c > 0, and arg minx(f + c) = arg minx f for all
c ∈ R.

3. arg minx f = arg minx(log ○f) and arg maxx f = arg maxx(log ○f), where
log ○f ∶X → R is defined by x↦ log(f(x)).

§9.2 Linear regression, more seriously

Let’s recall the basic setup. There’s an unknown function f ∶ Rn → R that’s actually
labeling the data (i.e. some feature x ∈ Rn arises in nature and it carries the label
f(x) ∈ R). If we’re in the setting of linear regression, then our hypothesis class consists
of (affine) linear functions, i.e.,

H = {h(x) = w0 +
n

∑
i=1
wixi ∣ wi ∈ R} = {h(x) = ⟨w,x+⟩ ∣ w ∈ Rn+1}

where x+ is just x with a 1 tacked onto the end (which allows us to capture the translation
term w0). So let X ∈ Rk×n be a collection of k randomly chosen features, and Y ∈ Rk be
defined by Yi = f(Xi). In particular, X and Y just define the features and labels in our
sample, respectively.

Here’s a problem: find the value of w that minimizes the empirical risk with respect to
X and Y . Ideally, we’d like to exhibit weights w with Xw = Y , i.e., weights that perfectly
interpolate on our sample points.

Example 9.2

Say X = (1
3
) and Y = (1

2
). Then H = {h(x) = ax + b ∣ a, b ∈ R}, and we actually can

find a hypothesis that perfectly interpolates on these points. In particular, that’s
hERM(x) = 1

2 +
1
2x. Note the importance of that translation term a. Geometrically,

all that’s happening here is that any set of two points in R2 can be connected by a
line (not necessarily passing through the origin). For larger sets of points, this is
usually not possible, and you may be obligated to incur some training error (i.e., fail
to interpolate).

There’s an important modification to this setting that takes the fuzziness of the real
world into account – that is, incorporate noise into the labels. So we’ll have X ∈ Rk×n and
Y ∈ Rk where the Xi are still drawn from distribution (perhaps normal), but Yi = f(Xi)+εi
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where the εi are i.i.d. N (0, σ2). In words, there’s some uncertainty on the labels that
get observed with a feature; the world is no longer perfectly deterministic.

Now how do we select hypotheses from samples? Empirical risk minimization doesn’t
really make sense anymore, as it doesn’t take the randomness on labels into account. It’s
instead more sensible to perform maximum likelihood estimation. That is, what is
the choice of labeling function h that would maximize the likelihood of observing the
given data? Try to think a bit about why this is a more clever way to test a hypothesis’
compatibility with the data than ERM in this setting.

Formally, the maximum likelihood estimator for observations X and Y with labeling
function ⟨w,Xi⟩ and variance σ2 on noise terms εi is:

arg max
w

P (Y ∣X,w,σ2) = arg max
w

k

∏
i=1
N (Yi ∣X,w,σ2)

= arg max
w

k

∏
i=1

1

σ
√

2π
e−

1
2
((Yi−⟨w,Xi⟩)/σ)2

= arg max
w

log ( 1

σ
√

2π
) − 1

2
(Yi − ⟨w,Xi⟩

σ
)
2

= arg min
w

k

∑
i=1

(Yi − ⟨w,Xi⟩)
2

Corollary 9.3

Doing ERM with squared loss on a deterministic model is the same as doing MLE
on a model with Gaussian noise! Likewise, attaching a prior distribution to the
weights w and calculating the MLE estimator recovers ridge regression. In fact, all
the empirical risk minimizers in (deterministic) linear regression have a probabilistic
counterpart!

Furthermore, note that the term ∑ki=1 (Yi − ⟨w,Xi⟩)
2

is a polynomial of degree 2 in the
variable w (recall that X and Y are the known constants corresponding to our sample
points). Since it’s of degree 2, its global extremum is guaranteed to happen at the point

with derivative 0. Note also that ∑ki=1 (Yi − ⟨w,Xi⟩)
2 = ∣∣Xw − Y ∣∣2. So we have:

∂

∂w
∣∣Xw − Y ∣∣2 = ∂

∂w
(Xw − Y )T (Xw − Y )

= ∂

∂w
(wTXT − Y T )(Xw − Y )

= ∂

∂w
wTXTXw − Y TXw −wTXTY + Y TY

= ∂

∂w
wTXTXw − 2

∂

∂w
wTXTY

= 2XTXw − 2XTY = 0.

This amounts precisely to XTXw =XTY , which is known as the normal equation.
We’ll spend lots of time talking about how to solve this equation. Methods include LU
decomposition, QR decomposition, Cholesky decomposition, and SVD (we won’t talk
very much about the first two).

Notably, the previous derivation made use of a few results in matrix calculus that you
should be aware of.
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Figure 2: Common vector derivatives, from here.

§9.3 Multivariate normal distribution

A quick detour on the multivariate normal distribution, which we’ve touched on before.
The multivariate normal distribution (MVN) is the higher-dimensional analogue of
the normal distribution. In particular, a k-dimensional MVN distribution is determined
by k many mean parameters and k2 covariance parameters (one mean for each dimension
and one covariance for each pair of dimensions, satisfying symmetry rules).

Definition 9.4 — A k-dimensional random vector X = (X1, . . . ,Xk) following a
multivariate normal distribution is written as follows:

X ∼ N (µ,Σ).

In particular, µ = E(X) = (E(X1), . . . ,E(Xk))
T

and Σi,j = Cov(Xi,Xj). Its density
is

fX(x1, . . . , xk) =
exp ( − 1

2(x −µ)
TΣ−1(x −µ))

√
(2π)k∣Σ∣

.

Notably, a 1-dimensional MVN is simply a normal distribution (with single mean
and covariance parameters), and marginalizing/conditioning an MVN produces another
MVN. More explicitly, if (X1, . . . ,Xk) follows a k-dimensional MVN, then (X1, . . . ,Xk−1)
follows a (k − 1)-dimensional MVN, and ((X1, . . . ,Xk) ∣Xk = c) does as well.

§9.4 Cholesky decomposition

The statement at the center of Cholesky decomposition is the following: if X is a
symmetric, square, positive-definite matrix, then X = LLT for some lower-diagonal matrix
L. The importance of the decomposition is that it makes it much easier to pre-image
under X, i.e. to solve equations of the form Xa = b, where b is known and a is not.

To see the relevance for the normal equation, let’s again say we have XTXw =XTY
where X and Y are known. Suppose furthermore that we have the Cholesky decomposition
for XTX, i.e., XTX = LLT . Then the normal equation reduces to

LLTw =XTY

which can be solved efficiently by leveraging lower-diagonality of L via two forward-
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substitution. More explicitly,

Lα =XTY

LTw = α.

§9.5 SVD

Here’s the statement of SVD, or singular value decomposition: if X ∈ Ra×b, then it admits
a decomposition as X = UΣV T where U ∈ Ra×a is orthogonal, V ∈ Rb×b is orthogonal,
and Σ ∈ Ra×b is diagonal (with the ‘singular values’ of X on its diagonal). Informally, all
linear transformations consist of a rotation, followed by a projection with scaling in each
dimension, followed by another rotation.1

§10 Thursday, October 7

§10.1 Solving the normal equation with . . .

Quick recap of last time: we started studying how to calculate ERM hypotheses for linear
regression, meaning we want arg minw ∣∣Xw − Y ∣∣2. We also saw, remarkably, that this is
the same thing as finding the MLE weights w for a linear model with Gaussian noise. It
can sometimes be useful to be move between these interpretations of the same process:
ERM in a deterministic world and MLE in a stochastic world.

We also saw that setting the derivative of ∣∣Xw − Y ∣∣2 with respect to w equal to 0
recovers the normal equation, which is XTXw =XTY . We saw that the normal equation
can be solved using linear algebra, along with a few tricks to speed things up.

1. Cholesky decomposition: X = LLT , where L is lower-diagonal.

2. SVD: X = UΣV T , where U,V are orthogonal and Σ is diagonal. Orthogonal
matrices can be thought of as changes of bases, so SVD really says that all linear
transformations consist of changing basis, projecting/scaling, and changing basis
one more time. In other words, all linear transformations are just scalings in each
dimension, up to changes of basis.

We’ve talked about Cholesky, so now we’ll dive into using SVD to solve the normal
equation.

1Really, orthogonal matrices correspond to more general functions than rotations (e.g., reflections), but
that’s the idea.
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§10.1.1 SVD

So say we have the normal equation in the setting where X has gone through SVD. Then
we have:

XTXw =XTY

(UΣV T )T (UΣV T )w = (UΣV T )TY
V ΣTUTUΣV Tw = V ΣTUTY

V ΣTΣV Tw = V ΣTUTY

ΣTΣV Tw = ΣTUTY

ΣV Tw = UTY
V Tw = Σ†UTY

w = V Σ†UTY.

Along the way, we made use of the fact that orthonormal matrices are invertible
(and their inverses are their transposes), and that Σ isn’t quite invertible but has a
Moore-Penrose pseudoinverse Σ†.2

§10.1.2 Root finding (via Newton’s method)

Newton’s method is a powerful tool for finding zeroes (or roots) of polynomials. It works
by randomly picking a point x0 and computing its image under the polynomial p. Then,
in general, it takes the derivative of p at xn and takes xn+1 to be the point at which that
derivative has a zero. We’re not going to go into the mathematical details here, but this
algorithm usually tends to a zero of p, which is what we’re after.

Figure 3: Newton’s method, from Paul’s online math notes.

This is a neat method with good foundations, but it’s not used all too often in practice,
since its complexity suffers in high dimensions. It’s useful to know, though, and it can
work well in low-dimensional settings like the ones we work in. To solve the normal
equation, we just apply it to the derivative of ∣∣Xw − Y ∣∣2.

§10.1.3 Gradient descent

gradient descent is a legendary technique in optimization – the idea is to evaluate the
derivative of the function at a given point, move your point away from the derivative (or

2There may be a typo here – be careful.
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toward it, if maximizing), and repeat. Formally, given a function f , you would define
your estimates xi via:

⎧⎪⎪⎨⎪⎪⎩

x0 = v,
xm+1 = xm + f ′(xm).

This is fairly simple and intuitive, but it also has a pretty big pitfall – it will very often
fail to converge, especially when derivatives are large (and the steps you’re taking are
huge). To remedy this, you usually put a coefficient λ on f ′(xm):

⎧⎪⎪⎨⎪⎪⎩

x0 = v,
xm+1 = xm + λf ′(xm).

In higher dimensions, you do the analogous thing using the gradient ∇f of f .

§10.1.4 Stochastic gradient descent

stochastic gradient descent (SGD) is probably the most important algorithm of the
21st century, and lies right at the center of modern machine learning (i.e., deep learning).
The idea behind SGD is to randomly pick some of your data points and take your
derivative with respect to them, rather than using all of your data (which is much more
computationally expensive, of course).

So, if you’re minimizing ∣∣Xw − Y ∣∣2, then in SGD X and Y really won’t be fixed; at
any given step, you’ll be calculating the gradient using only some subset of the data in X
and Y . This actually works a lot of the time (with the right parameters), and it’s much
cheaper than ordinary gradient descent.

So this is the fundamental tradeoff being faced: GD takes very precise steps at high
cost, while SGD takes noisier steps at lower expense.

§11 Thursday, October 14

Last time we talked about implementing empirical risk minimization in the setting of
linear regression. That is, how can we find the coefficients (or weights) in a linear function
that produce the best fit for the data we’ve seen? We saw that minimizing that empirical
risk is equivalent to solving the normal equation, and saw several methods for doing this
concretely.

In that whole setup, the only function we had access to were of the form {f(x) =
⟨w,x⟩ ∣ w ∈ Rn}, which is not so sophisticated. There are definitely settings in which
we’ll want to model nonlinearities, and the feature engineering might not be so obvious
if we’re restricted to linear hypotheses. So we’ll be looking at more powerful classes
of hypotheses, via neural networks. These maps can be so complex that most of
our previous optimization techniques won’t apply, aside from (S)GD. Those require
derivatives, though, which brings us to the topic of automatic differentiation.

§11.1 Automatic differentiation

An important package for machine learning is torch, which has the functionality for
automatic differentiation built in. automatic differentation is just the process of
taking in a program for a function and outputting a program for its derivative. As you
can imagine, having this kind of tool will be really important for (S)GD, which involves
repeatedly calculating gradients. Roughly speaking, this done by breaking up a function
into sums and compositions of elementary functions (like multiplication, trig functions,
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exponentiation, etc.), calculating their derivatives, and using linearity of the derivative
along with the chain rule.

Here are some common autodiff mistakes:

1. Calling grad on a non-leaf. In particular, you should call grad on the variables
that are used to build the final expression, not the final expression itself.

2. Calling backward multiple times before calling grad. This warps the derivative
that gets calculated, so be careful. If you’re not sure how many times you’ve called
backward, you can just set x.grad = None, then call backward once and use grad.

§11.2 Neural networks

At a high level, neural networks work by repeatedly passing scaled sums of simple
functions through nonlinear activation functions. This gives rise to an extremely
flexible class of functions that almost make feature engineering, model selection, and
clever thinking obsolete. It’s hard to overstate how powerful these neural networks can
be, and how much deep learning has come to dominate contemporary machine learning.

In addition to being extremely successful, these networks also resemble somewhat the
structure of the brain (hence the name) and how it performs visual processing, with
neurons connected to each other and the earliest ones working to recognize lines and
quadrants.

§12 Tuesday, October 19

§12.1 Neural networks, again

Last time we talked about neural networks. We saw that a central component of their
success is automatic differentiation, which allows for relatively easy implementation of
(S)GD. We also talked about the role of activation functions (like sigmoid and ReLU),
which allow us to bake nonlinearities into the networks.3

By tradition, layers in neural networks that are neither input nor output layers – and
are simply used for intermediate manipulations – are referred to as hidden layers.

3If the activation functions are linear, then the entire neural network will actually end up encoding
a linear function. This is a consequence of the fact that linear functions are closed under scaling,
addition, and composition (i.e., doing any of those things to a set of linear functions will give you
another linear function).
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Figure 4: Neural network, from Understanding Machine Learning: From theory to algo-
rithms.

An extremely important point is that neural networks are not understood all that well.
It can be shown that they have extraordinary flexibility, i.e., can be used to approximate
almost any function arbitrarily well. As a result, they fly somewhat in the face of the
usual bias-variance tradeoff, as they often generalize well when trained with (S)GD
despite representing an extremely complex hypothesis class.

It’s worth noting that there are only a couple important activation functions:

1. sigmoid: it used to be very popular, but not so much anymore – we’ve found better
functions.

2. tanh: the hyperbolic tangent function.

3. ReLU: it’s just x↦max(0, x), but it’s become the most popular activation function,
and it’s very effective.

Recall the structure of gradient descent; we select initial parameters for our model,
compute the gradient of the empirical risk with respect to those parameters, and move to
the parameters in the direction of decreasing gradient. The geometric intuition is clear:
we pick a point, calculate the slope, and follow the slope downwards (only slightly) in
the hopes of reaching the minimum. Stochastic gradient descent is identical but takes
the gradient of the empirical risk calculated on some randomly chosen subset of our data,
rather than the entire dataset (the idea being that our dataset might just be too huge).

There are lots of degrees of freedom here, though; when to stop gradient descent, how
much to move in the direction of decreasing gradient, where to initialize your parameters,
etc. Training these networks effectively can be extremely difficult, and both an art and a
science. There are optimizers that are slightly more clever than (S)GD, though, which
– for instance – try to use information about the second derivative. Perhaps the most
famous is Adam, and others include Adadelta, RMSProp, etc.

§13 Thursday, October 21

Homework 8 is being built right now, and it’s not going to be easy – you’ll need to find
your own dataset, clean it and preprocess it, etc. It’s really important to start early on
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this one, and you may want to assemble into a larger group if you’re in a small group
right now.

Another logistical point: the final may end up counting for less than it’s currently
stated to count for (30%), with more weight going toward some of the homeworks, which
have been pretty hard. Everyone will have to vote in an anonymous poll (and unanimously
agree on the new grading system) if we’re going to change the syllabus, though.

§13.1 Neural networks

So, thanks to autodiff, (S)GD, and torch, it’s not so hard to play around with neural
networks. At a basic level, we’ve seen everything we need in order to design and train
neural networks. But there are other cool and useful facets of torch that are worth
touching on; they can make a huge difference in the efficiency of training a neural network,
for instance.

A couple of points we’ll touch on today:

1. Defining neural networks using modules, which are flexible and highly optimized
(i.e., efficient). It’s also time-saving (and tear-saving) to work at a higher level of
abstraction, with built-in functionality that pros have built.

2. Using pre-defined optimizers.

3. Datasets of DataLoaders. These can have huge performance benefits from clever
work under the hood (i.e., bringing data close to the CPU before you need to use
it).

4. Tips for successfully training neural networks.

When it comes to optimizers, a rule of thumb is to use Adam when you’re not quite
sure what to do. It’s not particularly well-understood, but it’s usually effective. Generally
speaking, it’s worth reiterating that training neural networks is really hard – there are
people whose full-time job is to train networks, it’s a very active area of research, etc.
The upside to this is that if you practice training them and build intuition for this, you’ll
have an extremely valuable skill.

As we’ve mentioned, separating the data into training, validation, and testing is crucial.
So you’ll want to have a DataLoader for each one. One useful tip is to use tqdm when
running for loops, as they give you a progress bar for for loops and an estimated time
until completion. The syntax is

for i in tqdm(range(n)):

do_thing(i)

Another useful package is wandb, which helps you keep track of analytics while per-
forming ML. For instance, you can make sure that you train until you get a training loss
of 0 (i.e., perfectly interpolate on the sample). In fact, this is often a desirable thing to
do. Notably, that flies entirely in the face of the bias-variance tradeoff that we covered
only a few weeks ago. Unfortunately, this is just one of the central mysteries of deep
learning – neural networks often interpolate on sample data yet generalize extremely
well.4 Whoever figures this out will probably be a legend in the field.

That’s all for today: next time, we’ll talk about neural networks that take in graphs
describing molecular systems.

4You can look into ‘benign overfitting’ or ‘double descent’ to learn more.
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§14 Tuesday, October 26

§14.1 Vanishing and exploding gradients

A quick detour on a common mistake from the last homework. A couple weeks ago we
talked about how autodiff uses the chain rule to calculate the derivatives of programs. In
particular, this results in the multiplication of lots of derivatives, which can tend to result
in the vanishing/exploding of the overall product (especially when you’re reusing weights
in your network). For instance, 1

2

n
very quickly tends to 0 while 2n quickly explodes.

A corollary of this is that deeper networks (i.e., with more hidden layers) are generally
harder to train, as the n in the previous sentence is larger.

Example 14.1

Facebook sometimes gets around this issue while using very deep networks (e.g.,
with dozens of hidden layers) by adding connections directly from earlier layers to
later layers. This helps avoid the failure of backpropagation for such deep networks.

§14.2 Graph neural networks

Today we’ll be talking about graph neural networks, which are neural networks that
take in graphs as input. They’ll come up in this upcoming homework, where the name
of the game will be to predict the energy of a molecule’s ground state. Furthermore,
you’ll need to create your own model on this homework, rather than using black-box
technologies from popular libraries. Important packages for graph neural networks are
DGL, which stands for Deep Graph Library, and dgllife.

To give some context here, previously we’ve been ignoring the graph structure of
molecular systems, which has made prediction fairly difficult. In particular, even with the
knowledge of a system’s atoms and bonds, lots of information about the actual geometry
of the molecule is being destroyed (e.g., the location of the bonds). So the goal here is
to feed an actual graph describing the molecular system to a neural network, which is
where these graph neural networks come in.

The way this is actually done involved the notion of convolution, which – informally
– featurizes a node using information from itself and its neighbors, so that information
about relationships in the graph is captured. A similar idea is used in neural networks
for image processing, where relationships between nearby pixels matter.

§14.2.1 Some syntax

When you have a graph g, g.adj() gives you the adjacency matrix of g (in sparse matrix
form), which contains the information of g’s edges. In order to actually add structure to
your graph (e.g., labels for edges and vertices), you will need to the node featurizer

and edge featurizer arguments in smiles to bigraph(); more details in the jupyter
notebook for today’s lecture.

§15 Thursday, October 28

Some people didn’t vote for the syllabus change so we had a big discussion about contract
law and the European Union – gnarly.
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§15.1 Geometry and potential energy

Back to machine learning and chemistry; a couple notions to introduce that will be useful
for the remainder of the course (and the final library we’ll be introducing). The library
we’ll look at today is ase, which stands for atomic simulation environment. It allows you
to work with molecules by considering the positions of their atoms’ nuclei in space.

Definition 15.1 — The structure or geometry of a molecule refers to the spatial
arrangement of its nuclei.

The structure/geometry of a molecule is so crucial because of the famous saying:
structure determines property. In other words, everything we care about is a function of
a molecule’s geometry.

Example 15.2

The energy of a molecule is a function of its geometry. So are the forces that act on
its nuclei and the bonds that it has.

Another crucial concept in chemistry is that of the potential energy surface (PES),
which is the graph of a molecule’s geometry with its potential energy. Note for instance,
that the global minimum on the PES corresponds to the ground state of the molecule.
Speaking more generally, PES’s contain an enormous amount of information about a
molecular system, and can tell us about its reactions, transition structures, conformers,
etc.

§15.2 Homework

The goal of this homework is to predict the ground state energy of a molecule. In
particular, you’ll be taking in the smiles representation of a molecule and outputting (a
prediction of) its energy in the ground state. So you’ll have to put together a dataset
whose elements take the form (smiles string, ground state energy).5 Once you’ve put
together this dataset, you’ll be able to use something like a graph neural network to
predict the energies (possibly using smiles to bigraph).

§15.3 ASE package

The ase package will be really useful here. If mol is of type ase.Atoms, then you can
run mol.get positions() to see the positions of its atoms. It’ll be key to give mol a
calculator attribute, by writing something like

mol.calc = MOPAC(label=’TMP’, task=’1SCF UHF BONDS GRADS’).

Once mol has the calculator attribute, you can write mol.get potential energy() to
get the potential energy of its current geometry.6 It’s that simple! We’ll also get an
output file from MOPAC with much more detail on the chemical properties of mol, like
the gradients of its PES.

5Strictly speaking, we’re only asking you to predict the energy at one of the local minima on the PES,
not the global minimum.

6If we had given MOPAC a different task argument when setting it as mol’s calculator, we could have
gotten another energy, like one if its ground state energies.
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Warning. Be careful with units here; keep in mind that MOPAC outputs energies in
units of eV (electron volts).

In particular, MOPAC will give you the forces acting on the molecules, which equal
the negative derivatives of the PES. The punchline is that you can use this to perform
S(GD) with your neural network!

§16 Midterm 2 review

§16.1 Linear regression

The setup of linear regression Rn → R is that f(x) = ⟨w,x⟩ for some (unknown) w ∈ Rn.
We saw that one algorithm for learning linear regression is ERM where the loss function
is squared error, i.e., to output h(x) = ⟨w0, x⟩ where w0 = arg minw ∣∣Xw − Y ∣∣2. We also
saw that calculating arg minw ∣∣Xw − Y ∣∣2 could be done by setting its derivative with
respect to w equal to 0, i.e. ∂

∂w ∣∣Xw − Y ∣∣2.
We won’t go through the algebra again, but we derived earlier that setting that

derivative equal to zero recovered the normal equation, i.e.,

∂

∂w
∣∣Xw − Y ∣∣2 = 2XTXw − 2XTY.

And thus we want to pick w satisfying XTXw =XTY .

§16.1.1 Cholesky and SVD

To actually solve this, we talked about the Cholesky and SVD decompositions of matrices.
For instance, when X and Y are fixed samples, the Cholesky decomposition of XTX
takes the form XTX = LLT for a lower-diagonal matrix L. Then the normal equation
reduces to

LLTw =XTY

which can be solved efficiently by leveraging lower-diagonality of L via two forward-
substitution. More explicitly,

Lα =XTY

LTw = α.

§16.1.2 (Stochastic) gradient descent

We saw that you can also minimize a function using (stochastic) gradient descent, which
is often much cheaper than using an exact solver like Cholesky or SVD. The big idea
of gradient descent is to calculate the derivative of your function at a point xi (using
your sample points X and Y ), move your point away from the derivative to get xi+1, and
repeat. Stochastic gradient descent is a close analogue where you only use a subset of
the data in X and Y to calculate your gradient at each step.

This only makes use of the first derivative of a function; more sophisticated solvers like
Adam and RMSProp actually use information about the function’s higher derivatives.

26



CSCI 3340.01: Intro to Machine Learning with Applications to Chemistry Fall 2021

§16.1.3 Stochastic linear regression

There’s another way of thinking about linear regression, where you actually have noise
on your labels, i.e. f(x) = ⟨w,x⟩ + εx for i.i.d. noise terms εx ∼ N (0, 1). Now we’d like to
pick a candidate w that maximizes the likelihood of having observed the sample X,Y (in
statistical language, a maximum likelihood estimator). More explicitly, we want

arg max
w

P (Y ∣X,w) = arg max
w

n

∏
i=1
N (Yi ∣X,w).

Remarkably, we saw that this recovers the exact same arg min as performing ERM
with deterministic linear regression and squared loss.

§16.2 Q & A

Question: Do any of these techniques come up in the packages we use?
Answer: Definitely! Packages like torch (and most of the fancy machine learning
technologies you hear about in the news) use SGD all the time. Since it found its way
into machine learning around a decade ago, it’s been used almost everywhere.

Question: Why do we use noise terms?
Answer: We do this in practical settings where we think the true data generating process
is of the form ⟨w,x⟩, e.g. y = ⟨w,x⟩ but we have noisy observations ỹ = y + εx due to
imprecision in our actual measuring devices (like telescopes, or something). Alternatively,
there could be some additional factors beyond x that very slightly affect y, but we
ignore them in favor of a simpler, more tractable model that’s still useful (e.g., maybe y
actually also depends very slightly on the distance between the moon and the Earth at the
time of measurement, but we aren’t really going to worry about thousands of such factors).

Question: Any multiple choice questions this time?
Answer: No, no multiple choice. This midterm will be more mathematical than the first
one (though it’ll also have a few programming problems).

Question: What’s the breakdown of the test?
Answer: Here’s the full breakdown:

• 3 coding questions, worth 4 points each

• 3 ‘math’ questions, worth 2 points each

• 2 chemistry/machine learning questions, worth 1 point each

§16.3 Homework 6

Let’s go over Homework 6. It dealt with automatic differentation, which concerns how
computers calculate gradients for programs, and is at the heart of techniques like (S)GD
in practice. The actual math isn’t too fancy: a program is a composition of lots of very
simple functions, and you can use the chain rule to calculate its derivative, piece by piece.

In this homework, you optimized once by calculating the derivative explicitly by hand,
and another time using autodiff. In each case, the idea was just to iterate a couple
thousand times, calculating the derivative each time and moving your weights very
slightly away from the derivative (i.e., with a coefficient of something like 1e-7).
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§17 Tuesday, November 9

§17.1 Midterm post-mortem

Remember to sign up for a final project if you’d prefer it to a final exam. Now a quick
remark on the midterm: it ended up being a little harder than expected, but don’t be
terribly worried about it. The current intention isn’t to fail anyone, or even to give out
any D’s. It really looks like everyone is trying hard on the homework and the class overall,
and the plan is to overwhelmingly give A’s and B’s.

§17.1.1 Question 1

Most of you did really well on this, though there was one common hiccup: the loss
function is not just ∣∣Xw − Y ∣∣2, but ∣∣Xw − Y ∣∣2 + ∣∣w∣∣2, so you need to add that second
term when calculating your error. Almost everyone made that mistake, but it really does
matter for what your algorithm does.

§17.1.2 Question 2

You only needed one linear layer here, nothing terribly fancy.

§17.1.3 Question 3

This one was a bit tricky; it was again important to include the ∣∣w∣∣2 term in your mse
calculation. This could be done by feeding a tensor purely of ones to your model, which
would recover its coefficients.

§17.1.4 Question 4

People did great on this question – nicely done.

§17.1.5 Question 5

Now to the theory: this question asked you to calculate

∂

∂w
∣∣Xw − Y ∣∣2 + ∣∣w∣∣2.

You already know the derivative of the first term with respect to w, so you only need the
second one. That comes out to

∂

∂w
∣∣w∣∣2 = ∂

∂w
wTw = 2w.

Most people got this, as the matrix calculus rules are in the notes.

§17.1.6 Question 6

So the equation you need to solve is this one:

2XTXw − 2XTY + 2w = 0.

That just reduces to (XXT + I)w = XTY . You can then use Cholesky decomposition
on (XXT + I), and the usual forward substitution trick. Other people used SVD on X,
which is doable but much more difficulty as there’s an added identity term.
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§17.1.7 Question 7

Only one person got this one; it was pretty hard. Recall that there’s the connection
between least squares arg minw ∣∣Xw − Y ∣∣2 and MLE (maximum likelihood estimation)
for the probabilistic model yi = ⟨xi,w⟩ + εi. In this question, we furthermore imposed a
multivariate normal prior distribution on w (with identity covariance matrix). When
calculating the likelihood of observing the sample, you get the usual likelihood (without

the prior term on w) multiplied by something proportional to e−∣∣w∣∣2 . You then take

logs, which turns c × e−∣∣w∣∣2 to log(c) − ∣∣w∣∣2, where c is the likelihood expression from
the usual case.

§17.1.8 Question 8

Few people got this: C4H10 has 14 molecules, and each of them are specified by 3
coordinates in space, so the PES is from R42 (geometry of the system) to R (the energy
of the system).

§17.2 Kernel methods

The goal of this class is really to get you to understanding machine learning deeply
enough (no pun intended) that you can define your own methods. Learning about kernel
methods will be a key step of that; they’re fairly advanced topics in learning, and also
quite mathematical. We’ll get in-depth on this on Thursday, and today we’ll discuss
some of the high-level ideas.

Traditional machine learning in chemistry takes the following form: data is collected
experimentally or through expensive calculations, it’s ‘featurized’ into feature vectors
(possibly using quantum chemistry), and off-the-shelf models are used on these features.
As we’ve discussed, this is somewhat limited because you need to cast your data as
vectors of real numbers.

The modern approach to using machine learning in chemistry is that the data is
collected (possibly even created from scratch, using quantum chemistry software), and
then the model input actually matches the structure of the data. Two differences between
the modern and traditional camps that we should highlight here:

1. Featurization is replaced with ‘feature learning’

2. Vectorization is replaced with ‘structured ML’, that actually respects the structure
of the input in its usual form.

In many cases, this modern approach has proven to work far better than the traditional
approach. One somewhat invisible cost to this is that the models are much more
complicated, hard to interpret, and sometimes black-box. For this reason, chemists
sometimes don’t love the modern approach.

There’s a third approach, though, in which machine learning and quantum chemistry
work in tandem. In this case, there’s not any pre-existing data; it’s actually collected ‘on
the fly’ to improve a model of the PES. In particular, an ML model serves as a model of
the PES. Then methods from quantum chemistry are used to (approximately) calculate
the value of the PES at a point p, and the ML model uses the information at p to update
its model of the PES. Informally, you explore quantum chemistry to explore the PES
and incrementally update your ML model of it.

This can be a powerful technique, but it’s worth noting some of the difficulties (and
some of the promise) when modeling the PES:
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1. The PES cannot be computed in closed form.

2. The PES can have practically unlimited complexity, for increasingly large systems.

3. The PES contains an incredible amount of important information concerning a
chemical system, about almost anything we would want to know.

Now recall some of our previous discussion about linear regression: it’s applicable not
only ‘directly’, i.e., to model a line in your feature space X , but also applicable with
an embedding function on your feature space. More explicitly, you can have a linear
model with an embedding function φ of the form f(x) = ⟨w,φ(x)⟩. With a map like
φ(x) = (x,x2, x3, x4), this let us fit polynomials in the framework of linear regression.

Neural networks arose as a further generalization of this, where you have something
close to a multi-layered linear regression (with these nonlinear activation functions and
possibly with an embedding at the start). Kernel methods will arise as yet another form
of generalization, which we’ll get into on Thursday.

§18 Thursday, November 11

§18.1 Kernel methods

We’ll keep moving with kernel methods today; the hope is to give you a sense of where
they come from and what they’re supposed to do. As we mentioned last time, we’ll begin
by considering a function of the form f(x) = ⟨w,x⟩, with x,w ∈ Rd. Furthermore, we
assume we have some dataset X ∈ RN×d and Y = f(X) ∈ RN . Nothing fancy here – this
is just linear regression.

As we’ve mentioned, something you can do here is to actually perform an embedding
φ on x (perhaps into some higher-dimensional space), and then consider linear regression.
Formally, this comes out to f(x) = ⟨w,φ(x)⟩. One example we saw on the homework was
φ(x) = (x,x2, x3, x4), which let us fit degree 4 polynomials in the framework of regression.
So we have the dataset X and Y = φ(X), by which we mean φ applied to each row of X.
So solving for the w that attains least squares is just

arg min
w

∣∣φ(X) − Y ∣∣2.

With the result about the normal equation, that just amounts to solving

φ(X)Tφ(X)w = φ(X)Y.

We’ve seen how to solve this with Cholesky/SVD/etc; if the inverse of φ(X)Tφ(X)
exists7, then you can trivially solve this with

w = (φ(X)Tφ(X))−1φ(X)Y

= φ(X)T (φ(X)φ(X)T )−1Y.

Definition 18.1 — The matrix φ(X)Tφ(X) is known as the design matrix, while
φ(X)φ(X)T is the Gram matrix.

7One way to make sure the inverse exists is to add the identity matrix to this term, which (as you’ll
remember from the midterm) recovers regularized least squares. One reason why we don’t like to do
this in practice is that inverting a matrix is numerically unstable.
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Lets think about the dimensions of the Gram and design matrices for a moment. The
Gram matrix is NxN (where N is the number of data points you have), while the design
matrix is ExE (where E is the dimension of the codomain of φ, i.e., the dimension of
the space where you embedded your features). So, crucially, the size of the Gram matrix
does not depend on the size of your ambient embedding space, while the design matrix
does not depend on the size of your data set.

Going even deeper, note that the entries of the Gram matrix G are the dot products
of our (embedded) feature vectors, i.e., Gi,j = ⟨φ(xi), φ(xj)⟩. The entries of the design
matrix, are dot products over all of the examples’ coordinates in a certain dimension. In
short, the Gram matrix has dot products of examples while the design matrix has dot
products of coordinates.

You can see now that it would be useful to consider a function k(a, b) = ⟨φ(a), φ(b)⟩,
as it would recover the entries of the Gram matrix (which are used in solving the normal
equation!). In particular, if we could compute k(a, b) without explicitly computing φ(a)
and φ(b), that would be really useful as we move into higher-dimensional spaces (where
taking the dot product of φ(a) and φ(b) directly would be expensive).

Definition 18.2 — For a set X, a function k∶X ×X → R is referred to as a kernel.

So this is where kernel methods come from; it’s really just a way of rethinking
this normal equation as we bring in these high-dimensional embeddings φ. The key
observation is just that if k(a, b) were easy to compute (even when φ(a) and φ(b) are
10,000-dimensional), that would be really, really useful. The same reasoning would hold
anytime your learning algorithm makes use of the inner products of your embedded
features, i.e., ⟨φ(a), φ(b)⟩. Taking advantage of such an easy-to-compute function k is
known as the kernel trick, and it’s really powerful.

Remark 18.3. The kernel trick works for the version of the normal equation that uses the
Gram matrix, but not the one that uses the design matrix, as the design matrix has inner
products of coordinates, not of entire examples/features.

That was fairly theoretical – let’s look at some examples.

Example 18.4

Let’s say x ∈ R and φ(x) =
⎛
⎜
⎝

1√
2x
x2

⎞
⎟
⎠

. Then ⟨φ(x), φ(y)⟩ = 1 + 2xy + x2y2 = (1 + xy)2.

That’s easier to compute than actually embedding x and y into higher dimensions
and then taking dot products. It’s pretty remarkable; there turns out to be an
efficient way of computing dot products in high-dimensional space that looks like
a much simpler algebraic manipulation (seemingly having nothing to do with dot
products).

Conversely, if we had k(x, y) = (1+xy)d, then it would recover k(x, y) = ⟨φ(x), φ(y)⟩
where φ(x) is an embedding of x into (d + 1)-dimensional space with all relevant
powers of x, i.e, x0, x1, . . . , xd. That’s pretty incredible.

The previous example gives rise to a question; when do we know that a kernel
function k∶X ×X → R actually recovers the dot product from some embedding, i.e., that
k(x, y) = ⟨φ(x), φ(y)⟩ for some φ? We’re not going to go into the details here, but this
turns out to be a solved problem (Answer: k needs to be symmetric and positive-definite).
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Now, let’s take this to infinite-dimensions. Say we want φ(x) to be the infinite-

dimensional vector (of length ∣R∣) containing e−(x−r)
2

for all r ∈ R. An ∣R∣-dimensional
vector is the same thing as a function out of R, in the same way a 5-dimensional vector v
is the same thing as a function f out of {1,2, . . . ,5}, with vi = f(i). So say φ is such an
embedding into (uncountably!) infinite-dimensional space. What would its ‘dot product’
look like? We would actually need to speak of a slightly more general idea, known as an
inner product, but the idea is very similar, i.e., to measure the similarity between vectors.

A natural candidate in this case would be8

⟨φ(x), φ(y)⟩ = ∫
∞

−∞
e−(x−µ)

2

e−(y−µ)
2

dµ.

This turns out to be computable in closed form, as
√

π
2 e

− 1
2
(x−y)2 . So, we can actually

perform infinite-dimensional embeddings with our data! Geometrically, we can also think
about this as φ(x) and φ(y) being bell curves centered at x and y, respectively. Then
⟨φ(x), φ(y)⟩ measures the area under the curve of their product, which will be bigger
the more their peaks overlap. This is a super meaningful notion of similarity!

§19 Thursday, November 18

§19.1 Predicting energy and force

Last lecture (which isn’t covered in these notes) involved further discussion of kernel
methods. We talked about the mean function µ and the kernel k, which intuitively
calculates a similarity score between its two arguments. The key property was that
k(x, y) = ⟨φ(x), φ(y)⟩ for some embedding φ.

We also talked about the Gaussian kernel k(x, y) = e−∣∣x−y∣∣2/2`2 , where ` plays the role
of the length-scale, which – informally – determines a point’s sphere of influence. Now
we’re going to talk about multi-label learning, in which we’re aiming to predict two things
rather than one, i.e., both the energy and force on a chemical system.

One thing we could is to just built two separate models: one for predicting energy and
another for predicting force. That’s not unreasonable, but it misses out on the fact that
we have prior knowledge for this problem, i.e., of the fact that force is the (negative)
gradient of energy. Something more clever we can do is to have a single set of weights for
predicting energy and force, and to have the prediction for force be simply the (negative)
gradient of the prediction for energy. The details here rely crucially on linearity of the
derivative. More explicitly, let f and g be the models outputting the energy and force of
a system.

Then we have f(x) = ⟨w,φ(x)⟩ and g(x) = f ′(x) = ⟨w,φ′(x)⟩. Now, it’s almost as if
we have we have an optimization with two objects rather than one (i.e., to have f fit well
and to have g fit well). Fortunately, we can glue these together into a single optimization
problem in a fairly straightforward way, i.e.,

arg min
w

∣∣ (φ(x)
φ′(x))w − (y

y′
) ∣∣

2

.

This just recovers the standard equation, with slightly different values of x and y than
we’re used to. In particular, we end up with

w = (φ(x)
φ′(x))

T ⎛
⎝
(φ(x)
φ′(x))(φ(x)

φ′(x))
T ⎞
⎠

−1

(y
y′
) .

8To motivate this, think about how the integral ∫ f(x)g(x)dx is the generalization of ∑i f(i)g(i).
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The point here is that your data on both energy and force works toward your prediction
on a single set of weights showing up in the equations energy and force. In particular, we
just made use of linearity of the derivative:

g(x) = d

dx
f(x)

= d

dx
⟨w,φ(x)⟩

= d

dx
∑
i

wi ⋅ φ(x)i

=∑
i

wi ⋅
d

dx
φ(x)i

=∑
i

wi ⋅ φ′(x)i

= ⟨w,φ′(x)⟩

In fact, this same argument would have worked for any linear operator by the above
reasoning (including, for instance, integration). So you can predict force, infer weights w,
and use those same weights to predict energy in a sensible way (or vice versa) without
doing any extra work!

§20 Tuesday, November 30

§20.1 Capturing invariances

We’re back from Thanksgiving. For the past couple lectures, we’ve been talking about
designing kernels to capture important properties and invariances. In physics and
chemistry, for instance, this shows up because the energy of a molecular system is
invariant to the rotation or translation of the molecule. That should be intuitive – if I
just move all my atoms one meter to the left, the energy of the system won’t change
(and likewise if I rotate it by 90 degrees).

The goal today is to delve deeper into these topics, since they can be pretty important.

§20.1.1 Translation

By translation, we mean moving all of the objects in a system in the same direction and
over the same distance. A given translation can be represented by a vector, for instance,
which captures the difference between each object’s final location and its original location.
In our case, the idea is that each nucleus in the molecule will be moved in exactly the
same way.

If X ∈ RN×3 is our system of N nuclei, then a translation represented by the vector
v ∈ R3 sends X to v ⊕X, where

v ⊕X =
⎛
⎜
⎝

v +X1

⋮
v +XN

⎞
⎟
⎠
.

A couple straightforward observations:

• v1 ⊕ (v2 ⊕X) = (v1 + v2)⊕X
• (v1 + v2) + v3 = v1 + (v2 + v3)
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• v + 0 = 0 + v
• v + (−v) = 0

So, here’s a recap of what we’ve seen so far about translations.

1. Translations can be parameterized by vectors in R3

2. The action of a translation v ∈ R3 is denoted by v ⊕X
3. Vector addition corresponds to composing translations. Furthermore, such transla-

tions (parameterized by vectors), have an associative addition, inverses, and a 0
element.

We’re getting equipped to make the notion of translation invariance precise. We’ll
need to introduce the notion of an orbit.

Definition 20.1 — The orbit of a system X ∈ RN×3 is the set {g ⊕X ∶ g ∈ R3}.

Definition 20.2 — We will say that two systems X,Y ∈ RN×3 are equivalent, and
write X ∼ Y , if their orbits are the same.

Definition 20.3 — A map f ∶RN×3 → R is translation invariant if f(X) = f(Y )
whenever X ∼ Y .

Now we’ve made everything precise :)

§20.1.2 Permutation

The idea here is that we want our model to send X =
⎛
⎜
⎝

X1

⋮
Xn

⎞
⎟
⎠

to the same place as

Xσ =
⎛
⎜
⎝

Xσ(1)
⋮

Xσ(n)

⎞
⎟
⎠

whenever σ is a permutation. We can again describe this using permutation

matrices, which are matrices with exactly one 1 in each row/column and all zeroes
elsewhere.

These matrices correspond to permutations of basis vectors, so they model precisely
those transformation that shuffle the order of our data points Xi. Furthermore, they
have the group structure9 that we discussed in the previous section, so we can speak of
their orbits in a sensible way.

In particular, a system X ∈ RN×3 is acted upon by a permutation matrix P ∈ RN×N
via X ↦ PX, i.e., using matrix multiplication. Just as in the previous section, we can
consider composition of permutations via P1(P2X) = (P1P2)X and observe that these
permutations have inverses and a null/identity element.

The big picture is again that:

1. Permutations are represented using permutation matrices.

2. Permutation matrices act on molecules by multiplying from the left.

9Don’t worry if you haven’t seen group theory before; the idea is just that these permutation matrices
associate, have inverses, and have an identity element.
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3. Permutations are combined by matrix multiplication.

4. This gives rise to orbits and an equivalence relation ∼P .

5. A permutation invariant map f is one that satisfies f(X) = f(Y ) when X ∼P Y .

§20.1.3 Rotation and reflection

You’ve got the hang of this by now: we represent rotations and reflection using orthonor-
mal matrices. They act on the data via matrix multiplication (on the right this time!),
give rise to orbits/an equivalence relation, and we can ask for invariance by demanding
that the function’s output be equal when two systems are equivalent.

§21 Thursday, December 2

§21.1 Designing kernels

Last time, we got precise about the ideas of rotation and translation invariance for models.
The point to all this was that we know that we’re in a setting where the thing that we’re
predicting (the energy of a chemical system) is indeed rotation- and translation-invariant.
That is, simply translating or rotating a system doesn’t change its energy at all.

So the goal is for our model f to have the property that f(X) = f(Y ) when X ∼T Y .
Recall that X ∼T Y means that X = v ⊕ Y for a vector v ∈ R3, with X,Y ∈ RN×3. Now
say we have a training set X = {X(1), . . . ,X(n)}. Then, by our previous discussion about
kernels, our model f will take the form

f(X) =
n

∑
i=1
αiK(X,X(i)).

Now how do we define kernels that act between molecular systems living in RN×3? One
way to do this is to sum up kernels acting on each of the coordinates of the systems, i.e.,

K(X(a),X(b)) =
N

∑
i=1

N

∑
j=1

Gaussian(X(a)
i ,X

(b)
j ).

We’re not saying that is the best way to do it, but it’s an option. What we really
want to keep in mind is that our kernel should be invariant to the action at hand (e.g.,
rotation or translation).

Definition 21.1 — A kernel K is invariant to a relation ∼ if K(X,Z) = K(Y,Z)
for all Z when X ∼ Y .

Lemma 21.2

If a kernel K is invariant to an equivalence relation ∼, then so is the model f it
induces.

Proof.

f(X) =
n

∑
i=1
αiK(X,X(i)) =

n

∑
i=1
αiK(Y,X(i)) = f(Y )
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Remark 21.3. The task of producing a model with certain invariances now reduces to the
task of producing kernels with the desired invariances!

Example 21.4

One fairly natural way to attain translation-invariance is to center your data before
doing anything with it. In particular, we could define

Φ(X) = (−X)⊕X.

Then any kernel of the form K(X,Y ) = ⟨Φ(X),Φ(Y )⟩ would have the translation-
invariance that we’re after.

Lemma 21.5

Φ, as defined in the previous example, is such that Φ(X) = Φ(Y ) if and only if
X ∼T Y .

Proof. Say Φ(X) = Φ(Y ). Then

X =X ⊕Φ(X) =X ⊕Φ(Y ) =X ⊕ (−Y ⊕ Y ) = (X ⊕ −Y )⊕ Y.

Conversely, suppose X ∼T Y . Then X = v ⊕ Y for some v. We then have

Φ(X) = Φ(v ⊕ Y ) = −v ⊕ Y ⊕ (v ⊕ Y ) = −Y ⊕ Y = Φ(Y ).

There’s a modern field of deep kernel learning in which deep learners are used to
construct the maps Φ and kernels are then constructed as KI(X,Y ) =K(Φ(X),Φ(Y )).
This can be really successful, performing much better than manually designed kernels
when things go right.

One last comment: if you were interested in making a kernel that’s permutation
invariant, then the sum of (for instance) Gaussian kernels we discussed earlier could be
useful, as addition is commutative.

That’s everything – thanks for joining us, and best of luck on the final project!
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