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Welcome to CS 670: Advanced Analysis of Algorithms. Here’s some important
information:

• The course webpage is http://david-kempe.com/CS670/index.html

• David’s office hours are 1-2pm in SAL 232 on Mondays, and Yusuf – the TA – has
office hours from 10-11am on Thursdays in SAL 246.

• The final exam is scheduled for 8-10am on Monday, December 12, but it may be
changed to a take-home final later in the semester.

• These notes were taken by Julian and are sure to contain some typos and omissions,
due only to Julian.
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§1 Monday, August 22

Let’s start with a high-level question: what is computer science? Why isn’t computer
science the same thing as algorithms? After all, anytime anyone runs something on
a computer, they have used (or even created!) an algorithm. Why don’t we call the
department the Department of Algorithms?

The primary distinction is that when doing algorithms work, we value different things
than other fields of computer science (that also utilize algorithms). Namely, we care
about:

• Provable guarantees (on time, space, performance, correctness, etc.),

• Generality,

• Simplicity,

• Mathematical insight underlying an algorithm.

Consequently, this class will involve lots of:

• Proofs,

• Abstraction,

• Mathematical modeling,

• Formal thinking.

§1.1 Shortest paths

Let’s work on the problem of finding shortest paths with non-negative edge weights.
First, let’s formalize this slightly.

Problem 1.1 (Shortest paths). Given a directed graph G = (V,E) with edge costs ce ≥ 0,
a source s ∈ V and sink t ∈ V , find a shortest path (i.e., path with minimal sum of edge
weights) from s to t.

Example 1.2

Why are we solving this problem? What are some possible applications? There’s:

• (driving) directions,

• routing in a computer network,

• routing physical packets,

• distance in (social) networks,

• puzzles.

Let’s go over the familiar solution to this problem.

Algorithm 1.3 (Dijkstra) —

1. Start with S = {s}

2. Set d[s] = 0, d[v] =∞ ∀v ≠ s

3. While t ∉ S:
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a) Find node v ∉ S minimizing minu∈S d[u] + c(u,v)
b) Add v to S and set d[v] = minu∈S d[u] + c(u,v)

4. Return d[v]

Next time we’ll discuss correctness of this algorithm — what exactly do we even mean
when we say that the algorithm is correct? — and we’ll get into minimum spanning trees.

§2 Wednesday, August 24

§2.1 Dijkstra’s algorithm

Last time we were discussing Dijkstra’s algorithm for finding (lengths of) shortest
paths in directed graphs with non-negative edge weights.

Algorithm 2.1 (Dijkstra) —

1. Start with S = {s}

2. Set d[s] = 0, d[v] =∞ ∀v ≠ s

3. While t ∉ S:

a) Find a node v ∉ S minimizing minu∈S d[u] + c(u,v)
b) Add v to S and set d[v] = minu∈S d[u] + c(u,v)

4. Return d[v]

Note that we can keep track of parent nodes – i.e., set p[v] = u – if we’d like to
compute the actual shortest path from s to t, rather than merely its length. Now it’s
time to prove correctness of our algorithm.

Proposition 2.2

At the conclusion of Dijkstra’s algorithm, d[t] = dist(s, t) ∶= minpath p∑e∈p ce.

Proof. We claim further that for all v ∈ S, d[v] = dist(s, v). We induct on ∣S∣. When
∣S∣ = 1, we have d[s] = 0 which indeed equals dist(s, s), as our graph has no negative
edges.

Now suppose we are adding a new v to S. First note that we do not change the values
d[u] for all u previously in S. Now we show d[v] = dist(s, v).

(a) Note that d[v] ≥ dist(s, v), as

d[v] = c(u,v) + d[u] = c(u,v) + dist(s, u)

is the length of some path from s to v.

(b) To see d[v] ≤ dist(s, v), suppose otherwise, namely that d[v] > dist(s, v). Then
there is a strictly shorter s→ v path p. At some point p crosses from S to S, via
an edge (u′, v′).
Because edge costs are nonnegative, dist(s, v′) ≤ length(p) < d[v]. By our inductive
hypothesis, d[u′] = dist(s, u′), so d[u′]+ c(u′,v′) = dist(s, v′) < dist(s, v) < d[v]. This
produces contradiction with the definition of v.
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So dist(s, v) ≤ d[v] ≤ dist(s, v), and we’re done.

Now let’s think about the time complexity of this algorithm. With a naive implemen-
tation, we get Θ(N ⋅M), for N the number of nodes and M the number of edges. In
particular, the loop in (3.) occurs at most N times and line (3a.) has cost M , as it
checks all the edges on vertices in S.

To make things even more efficient, we’ll want a data structure that efficiently supports
the ranking of our nodes by their estimated distance from s. In particular, we’ll want a
data container with the following operations:

• insert,

• decrease value,

• find min,

• remove.

With a standard min heap, we get complexities of O(logn) for all operations, with O(1)
for find-min. Furthermore, we call insert, find-min, and remove N many times, while we
call decrease value M times. So this implementation puts Dijkstra in Θ((M +N) logN).

Usually M > N , so this is dominated by M logN and we’d really like to make decrease
value a constant-time operation if possible. This would make our implementation
O(N logN), and indeed we’ll see how to do that — at the level of amortized analysis —
using Fibonacci heaps later on.

§2.2 Minimal spanning trees

Problem 2.3 (Minimal Spanning Tree). Given an undirected connected graph G = (V,E)
with edge costs ce ≥ 0, find a set T of edges with minimal total cost so that (V,T ) is
connected.

Remark 2.4. There’s an easy pre-processing step if edge costs are negative, where you just
grab all the negatively weighted edges, glue the connected components into single vertices,
and restart with a problem formulated in the sense of Problem 2.3.

Algorithm 2.5 (Kruskal’s algorithm) — Go through the edges E sorted from cheapest
to most expensive, adding each to T if they don’t create a cycle.

Algorithm 2.6 (Prim’s algorithm) — Start with T = ∅ and S = {s} for arbitrarily
chosen s ∈ V . While S ≠ V , let e = (u, v) be the cheapest edge connecting S to S,
and add e to T and v to S.

Lemma 2.7

Kruskal’s and Prim’s algorithms output spanning trees.

Proof. First we show that the outputs are acyclic. For Kruskal’s this is immediate and
for Prim’s it is because each added edge e produces a new leaf.

To see that the outputs are connected, suppose otherwise for Kruskal and consider
its output (V,T ). Because G is connected, there are edges in G leaving a connected
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component S of (V,T ). Then at some point we considered a cheapest edge e ∈ E from S
to S and skipped it, producing contradiction.

For Prim’s, first note that the algorithm terminates because G is connected. Further-
more, it only terminates when S = V , meaning (V,T ) is connected.

Lemma 2.8

Kruskal’s and Prim’s algorithms produce minimal spanning trees.

Before we prove this, we’ll want something called the cut property.

Lemma 2.9

Fix a graph G = (V,E) with distinct edge costs ce ≥ 0. If e ∈ E is the cheapest edge
for any cut (S,S) of G, then e is part of the (unique) minimum spanning tree for G.

Proof. Let T be an MST, and assume e ∉ T . Then T ∪ {e} has a cycle C containing an
edge e′ ∈ T that crosses (S,S). So we can replace e′ with e in T and get a spanning tree
of strictly lower cost, producing contradiction.

Now we can return to Lemma 2.8, proving it by showing that every e ∈ T chosen by
Prim/Kruskal is the cheapest across some cut. Then we’ll have that T is a subset of the
MST on G and thus that T indeed equals the MST .

Proof of Lemma 2.8. For Prim’s algorithm, note that any e ∈ T is cheapest across (S,S)
when added. For Kruskal, note that when e is added, it connects two current connected
components S,S′, and thus it is cheapest for (S,S) (or (S′, S′), if you like).

§2.3 Matroids

It’s pretty remarkable when greedy algorithms turn out to be optimal, as they make
fundamentally local moves yet somehow end up with (globally!) optimal solutions. In
the case of the MST problem, the idea is that picking up a cheapest edge e does not force
your hand further down along the line. That is, picking e does not force you to pick edges
e′ or e′′ later on as you construct your tree; you will instead still have freedom to choose.

Formalizing this property gives rise to the notion of matroids, for which it can be
shown that Kruskal’s algorithm is always correct and optimal!

Definition 2.10 — A matroid is a set system (X,I) with X a set and I ⊆ P(X)
a collection of independent sets with the following properties:

1. ∅ ∈ I,

2. S ∈ I Ô⇒ P(S) ⊆ I, (downward closed)

3. S,S′ ∈ I and ∣S∣ < ∣S′∣ Ô⇒ ∃x ∈ S′ ∖ S s.t. S ∪ {x} ∈ I. (exchange property)

Example 2.11 1. For any set X, (X,P(X)) is a matroid.

2. For any set X and k ∈ N, (X,{S ⊆ X ∣ ∣S∣ ≤ k}) is a matroid, known as a
uniform matroid.
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3. For any vector space X and collection I of linearly independent subsets of X,
(X,I) is a matroid.

§3 Monday, August 29

§3.1 Matroids II

Last time we were talking about matroids. One natural question is why do we call the I
in a matroid (X,I) the independent sets of the matroid? The reason why is precisely
because of the third example we looked at last time, namely the fact that that (X,I)
is always a matroid for X a subset of a vector space and I the collection of all linearly
independent subsets of X. This is known as a linear matroid. Another example is to
let X be the edges of a graph G and I be the set of all forests of G (i.e., acyclic edge
sets). This one’s known as a graphical matroid.

Proposition 3.1

If (X,I) is a matroid and each x ∈ X has a weight wx, then running Kruskal –
modified to pick the largest element – will find a max-weight independent set I ∈ I.

Remark 3.2. When we say maximum we mean largest, and when we say maximal we mean
that nothing can be added. So being maximal is a local condition while being maximum is a
global condition.

§3.2 Binomial heaps

Recall that Prim and Dijkstra’s algorithms each need data structures supporting insert,
find/delete, and decrement.

Heap Fibonacci Heap # calls

insert Θ(logN) Θ(1) N
find/delete min Θ(1) / Θ(logN) Θ(logN) N

decrement Θ(logN) Θ(1) M

To understand the efficiency of the Fibonacci heap, we’ll use amortized analysis,
which understands the worst-case cost of a sequence of operations rather than a single
operation. A crux idea is to pretend that some operations take longer than they truly do
and to use that to pay for (more expensive) future operations.

Before we get to Fibonacci heaps, though, we’ll start things off with binomial heaps.

Definition 3.3 — The binomial trees (Bi)i∈N are defined by B0 being an isolated
node and Bk being a node with k children, namely B0, . . . ,Bk−1.

Alternatively, one can define Bk as two copies of Bk−1 with a node between their roots,
one of which is arbitrarily determined to be the root of the combined tree. This makes it
easy to see that Bk has 2k many nodes. We say k denotes the rank of the binomial tree.

Definition 3.4 — A binomial heap is a finite collection of binomial trees, each
satisfying the heap property (i.e., the minimal element of each subtree is its root),
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such that there is at most one tree of each rank.a

aWe’ll violate the ‘at most one tree of each rank’ condition later on.

Remark 3.5. For concreteness, we can assume that a binomial heap h is implemented as
an array of the roots of the binomial trees constituting h. We index these trees (or roots of
trees) by rank, as no two trees in a given heap are permitted to share the same rank.

The operations we’d like our binomial heap h to enjoy are:

• insert(x, h): inserts a new element x into h,

• meld(h, h’): combines binomial heaps h,h′ into one new binomial heap,

• delete-min(h): deletes the minimum from h.

For meld(), an issue really only arises if we have binomial trees in h and h’ of the
same rank. In this case, going from smallest to largest rank, if we have two trees of rank
k, we can combine them into one of rank k + 1 and repeat.1 (This is like binary addition!)
It should be easy to see that this terminates.

For insert(), we can create a new B0 = {x} and meld with h. For delete-min(), we
can check all the roots to find the minimum and delete it. Then the children form a new
heap h’, which we can meld with the rest of h.

§4 Wednesday, August 31

§4.1 Binomial heaps II

Last time we talked about the implementations of insert(), meld(), and delete-min().
To think about their complexities, note that a binomial heap with n elements has
maximum rank at most log2 n and thus at most O(logn) trees & roots. An immedi-
ate consequence of this observation is that all our operations are in O(logn), since
meld(h, h’) is linear in the the number of roots of its arguments and insert(x, h)

and delete-min(h) are just meld() with at most O(logn) extra steps.
Let’s see if we can be even more refined with this analysis, though, to see that inserts

are cheaper than we think – at least at the level of amortized analysis. Informally, the
idea is that adding 1 to an n-bit number rarely takes a full n many steps of work. (For
instance, if n is even then it takes only 1 step.)

Simply put, expensive insertions seem to be rare, so we want to amortize the analysis
to get O(1) insertion cost (amortized). The credit invariant we want is that each binomial
tree’s root holds on to credit that can pay for a future merge with another tree. We’ll
set this up like so:

• insert: when creating a new B0 for x, we do one extra unit of work to give B0 a
credit.

• delete-min: for rank k, spend an extra k units of time to give each new tree a
credit. This makes delete-min a constant 2 times more expensive.

• meld: when we merge two trees into one, one credit pays for the merge and the
other stays with the new tree.

1We set the root of the combined tree to be the smaller of the two original roots.
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So now meld() and delete-min() are amortized O(logn) and insert() is amortized
O(1).2 But we think we can do even better ! To make meld() amortized O(1), we can
change it to a NO-OP.3 Then we’re allowing for multiple trees of the same rank at the
same time. Any time we run delete-min, we can first do a full cleanup pass merging all
duplicates, which costs O(logn) with merges paid by credits.

Now how should we implement decrement? A first attempt is that after locating the
right node v, we can decrease its value and swap up as in regular heaps. This is Θ(logn),
though, and we can’t amortize well because you can build inputs where a large fraction
of decrements need this many swaps. We really want amortized O(1).

§4.2 Fibonacci heaps

An alternative solution is to remove v and its subtree. This restores the heap property
because the parent is unaffected and because v has been made smaller, so its children are
still larger than it. A new problem is that we don’t end up with binomial trees anymore!
But why did we need binomial trees? The only crucial property was that they ensured
that the number of trees be logarithmic in the total number of nodes.

We can preserve this property while making the overall picture more flexible in the
following away: allow for removals of subtrees for decrement, but as soon as a node v
loses a second child, it (and its remaining subtree) must be removed. Note that this
could propagate to the parent of v and further up. This is known as the Fibonacci
heap rule.

The goal now is to show that – with the Fibonacci heap rule – the number of nodes in
a tree is still exponential in the rank of the tree. After cleanup, we have at most one tree
for each rank, implying that there are at most O(logn) trees. Then delete-min() just
needs to check O(logn) roots, as desired. The only real obstruction to this goal is the
possibility that one removal leads to a long chain of removing ancestors, giving rise to
super-constant time. But for this to happen, all these ancestors must already have lost a
child earlier, which was the first child (and thus a cheap removal). So we can amortize.

Formally, we can add removal credits to the picture: when v loses its first child, that
removal does constant extra work to give v a removal credit. When v loses its second
child, the removal credit pays for removing r and its remaining subtree. In addition, we’ll
need to add a merge credit for v and its parent when v loses its first child.

With this, we have that decrement() and insert() are amortizedO(1), and delete-min()

is amortized O(m) for m the max rank tree we have. To work out the max rank with n
nodes, let’s lower-bound the minimum number of nodes of a tree of rank k, call it sk.
Then you can see that sk = s0 +∑k−2i=0 sk. So sk = sk−1 + sk−2, explaining where “Fibonacci”
comes in. Then sk ≈ φk for φ the golden ratio, and we’re done :)

§5 Wednesday, September 7

Today we’ll be talking about data structures that support Kruskal’s algorithm, which
should be even more appealing now that we know — from Proposition 3.1 — that
Kruskal’s works for arbitrary matroids (not just MSTs!).

2It’s not so trivial to me that insert() is amortized O(1) while meld() is still amortized O(logn), but
David gave a helpful explanation that I’m not sure I can recreate.

3This means ‘do nothing’, apparently.
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§5.1 Implementing Kruskal

So how do we implement Kruskal’s algorithm? The naive implementation is, upon
reaching an edge that you’d like to check does not create a cycle in your set of selected
edges S, to run BFS between its endpoints (among edges in S). The complexity of this
is Θ(M ⋅N), since we’re running M many BFS’s, each of them on a set of at most N − 1
edges.

An alternative is to maintain an array that gives the index of the connected component
for each node. Initially, each node is its own component, and when two components
merge via an edge, we overwrite one with the other. This still takes linear time for each
merge operation, since we need to find all nodes belonging to a particular component.

§5.1.1 Union-Find

To avoid linear overwriting, we can instead have pointers to ‘parent’ components. Initially,
each node points to itself. When two components merge, we change the root pointer of
one to point to the other. This leads us to the Union-Find data type, which supports a
collection of disjoint sets with the following two operations:

• Find(e): returns the ‘index’ of the set that e belongs to,

• Union(e1, e2): takes the union of the sets containing e1 and e2 in our collection.

Our implementation of the data type is as a directed forest. The root of a tree is its
‘representative.’

• Find(e): follow pointers from e to its parent until reaching the root,

• Union(e1, e2): Find(e1) and Find(e2), then make one the parent of the other.

If we allow for any choice in implementing Union(), we can end up with trees that are
just chains, giving rise to linear-time Find(). This is pretty easy to fix: we should make
smaller trees point to larger trees. For the notion of “largeness”, we can use either height
or number of nodes; it turns out that they both work. So when two sets merge, we’ll
point the root of a smaller one to a larger one.

To analyze this, note that the height above a node can only increase when the size
of the node’s set at least doubles. So max weight is ≤ log2 n, and all operations run in
O(logn). Now Kruskal demands O(m logm) for sorting followed by O(m logn), so it’s
in O(m logm).

Remark 5.1. There’s a somewhat related idea of path compression for making root
look-up fast in trees. The idea is that whenever we search for the root from a node, we do a
second pass over that path and point everyone directly at the root. This doesn’t really help
worst-case running time, but it gets amortized time down to O(log∗ n).

§5.2 Dynamic programming

The first thing to know about dynamic programming is that there’s nothing
dynamic about it and it has nothing to do with programming. – David

Dynamic programming can be a powerful tool to help solve problems that seem truly
intractable at first glance. Let’s begin with an example. Say you have a triangle of
numbers, and you’d like to take a path from the root to a leaf while accumulating
the largest sum possible. An exponential-time solution is to try all paths, e.g., with a
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recursive approach that tries the left and right subtriangles and then adds the root to
the larger of the two. This gives time about 2n−1 for n rows.

Note that this is very wasteful, though: solutions to the same subproblems are frequently
recomputed. They should really be stored/memoized instead. Even better, we should
run this bottom up, computing the lowest level first, then the level above it (using the
stored values), and so on. With this idea, you get an Θ(n2) algorithm!

Abstracting a bit, the key property here was optimality of subproblems, or the principle
of optimality. That is, the optimal solution to a subproblem can be used directly in
the optimal solution for the bigger problem. This is not always the case; imagine this
triangle problem but in which you’re not allowed to repeat the same number on your
way down to a leaf. That’s a pretty reasonable problem, but it throws our dynamic
programming solution out the window.

Example 5.2

Say we want to multiply matrices A1 ⋅A2 ⋅ ⋅ ⋅ ⋅ ⋅Ak, where Ai ∈ Rni×mi . The objective
is to achieve this with as few scalar multiplications as possible, making use of the
fact that matrix multiplication is associative.

To be concrete for a moment, say we’re multiplying matrices with shapes (1 × n),
(n × 1), (1 × n). Then if we start by multiplying the left two, we do only 2n work,
whereas if we start by multiplying the right two, we do 2n2 work. That’s a big
difference!

Returning to the original problem, a key observation is that there is some final
multiplication we perform, of the form (A1 ⋅ ⋅ ⋅ ⋅ ⋅Ai) ⋅ (Ai+1 ⋅ ⋅ ⋅ ⋅ ⋅Ak). Before we get to
that multiplication, we need to compute both of the constituent terms optimally. This
gives us a key ingredient of the dynamic programming approach! Write OPT (i, j)
to denote the optimum cost to compute AiAi+1⋯Aj . Then we have

OPT (i, j) = min
i≤`<j

OPT (i, `) +OPT (` + 1, j) + ni ⋅m` ⋅mj .

(Along with the base case OPT (i, i) = 0.) If you were to code this up, the outer loop
would be over j − i and the inner loop over i.

§6 Monday, September 12

§6.1 Dynamic programming II

Let’s look at another classic example of dynamic programming.

Example 6.1 (Knapsack problem)

Here’s the problem: given n items with weights wi and values vi, as well as a total
weight limit W , select a subset of items with maximum total value and total weight
within W .

A natural choice to set up the DP approach is to have OPT (i,w) be the best you
can do with weight limit w on items {1, . . . , i}. Then there’s an easy recurrence

OPT (i,w) = max (OPT (i − 1,w), vi +OPT (i − 1,w −wi)).

This gives us an Θ(nW ) solutiona, which seems pretty good! Surely that’s a

13
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polynomial-time solution, so we’re done. But the knapsack problem is NP-complete,
so what’s going on here? The issue is that Θ(nW ) is not really polynomial. We call
an algorithm polynomial time when its running time is polynomial in the input
size (i.e., the number of bits in the input).

Usually, this relates closely with natural measures of our input like array size,
number of nodes/edges in a graph, etc. But not necessarily when the input involves
numbers and we do more than arithmetic with the numbers. In particular, the
number W takes Θ(logW ) bits to write, so W can be exponential in the input size.

aWe’re assuming weights are integral, which is fairly benign.

There’s a relevant definition to describe this phenomenon!

Definition 6.2 — An algorithm has pseudo-polynomial running time if the
running time would be polynomial if all numbers in the input were written in unary.

Informally, pseudo-polynomial time captures polynomial dependence on the values of our
inputs, not their sizes.

Example 6.3 (Subset sum)

Problem: given n numbers a1, . . . , an and target t, find a subset of the ai adding
up to t. Rather than doing more work, we can just reduce to Knapsack! We set
wi = vi = ai for all i and W = t. Then we get a value of t in our knapsack if and only
if a set summing to t exists.

§6.1.1 Independent set on trees

Definition 6.4 — For a graph G = (V,E), a set S ⊆ V is independent if no pair
of edges in S is connected with an edge.

Problem 6.5 (Weighted independent set). Given a graph G with weighted edges, select
an independent set S of maximum total weight.

This problem is NP-hard, and furthermore hard even to approximate. For the moment,
we’ll look at the special case where G is a tree. Then, to do dynamic programming,
“natural” subproblems are subtrees. We’ll want to think of trees as rooted, so let’s start by
picking an arbitrary root of G. We’ll then write OPT (v, “Y es”/“No”) for the maximum
weight independent set in a subtree rooted at v which may / may not include v itself.
Our base case will be OPT (�, “Y es”/“No”) = 0, where � is the empty tree (i.e., dummy
leaf).

Remark 6.6. The general approach for DP on trees is exhaustive search over the relatively
few choices at the root, which are then passed to its children as parameters for their optimal
solution.

§7 Wednesday, September 14

§7.1 Shortest paths (with negative edge weights)

Problem 7.1. Given a directed graph G = (V,E) with (possibly negative) edge costs
c(e) and s, t ∈ V , find a path p from s to t minimizing ∑e∈p c(e).

14



CS 670: Advanced Analysis of Algorithms Fall 2022

Remark 7.2. This problem is totally ill-posed, as we’re allowing G to have negative cycles.
For now, we’ll define this problem away and assume G contains no negative cycles. Later,
we’ll see how to actually test that.

Recall that Dijkstra generally does not work with negative edge weights. So let’s try
to crack this with a dynamic programming approach. A useful subproblem is to consider
shortest paths from all nodes v to t. So we’ll define OPT (v) to be the the minimum
total cost of a path v → t. Then OPT (t) = 0, because we have no negative cycles. And
for v ≠ t,

OPT (v) = min
(v,v′)∈E

c((v, v′)) +OPT (v′).

Once again, we need to think about the principle of optimality (or optimal substructure)
to ensure that this equality holds, though in this case it’s pretty clear. But how would
we actually implement this recurrence (in code)? In what order would we iterate over all
v ∈ V ? It’s really not clear. We cannot easily determine an update order (or, relatedly,
an induction variable for the correctness proof). To sidestep this problem, we introduce
the number of hops as a second variable for the optimum solutions to subproblems.

Now we have

OPT (v, i) = min (OPT (v, i − 1), min
(v,v′)∈E

c((v, v′)) +OPT (v′, i − 1)).

And our base case is OPT (v,0) = 0 if v = t and ∞ otherwise. Now this implementation
can actually be turned nicely into a bottom-up solution. Furthermore, we only need to
compute up until i = n − 1, as cycles aren’t helpful. And we’re done! Our code would
look something like:

for all v: a[v][0] = \infty;

a[t][0] = 0;

for (i=1; i \leq n-1; ++i)

for all v:

a[v][i] = min(a[v][i-1], min_{(v, u)} c[v][u] + a[u][i-1])

return a[s][n-1]

Remark 7.3. We can reduce space usage in the previous implementation by replacing i and
(i − 1) with their residues mod 2. In particular, we only ever need the previous row in our
table.

In fact, it turns out that we can even furthermore save space by modifying this algorithm
to be in-place on an array of size n. That’s fairly remarkable! The implementation is as
follows.

for all v: a[v] = \infty;

a[t] = 0;

for (i=1; i \leq n-1; ++i)

for all v in any order:

a[v] = min(a[v], min_{(v, u)} c[v][u] + a[u])

return a[s][n-1]
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The proof of correctness follows from two observations. First, after i iterations,
a[v] ≤ OPT (v, i). Second, after i iterations, a[v] ≥ OPT (i,∞). So after n − 1 iterations,
a[v] = OPT (v,∞)! Furthermore, if in any iteration there’s no update to any of the a[v],
then we can terminate the algorithm early.

Also, this algorithm — Bellman-Ford — naturally parallelizes! Each node repeatedly
asks its neighbors for their current distance to t and then updates its own estimate. In
fact, this idea underlies distance vector protocols for routing in networks. For each
major destination (IP address or cluster thereof), routers maintain estimated distances
(latency) as well as the cost of the first hop. And these are repeatedly updated.

In fact, rather than repeatedly asking out-neighbors for distances, it’s more efficient to
actively push new shorter distances to the in-neighbors when they arise. This is known
as a push protocol rather than a pull protocol (i.e., pushing information to people
that need it rather than asking information from people who may have it for you). One
issue here is robustness; if routers go down, or even if some costs become more expensive,
then you might need to do lots of recomputation. It’s also vulnerable to ‘impersonation’,
where some agents claim short distance to other destinations in order to attract traffic.

An alternative is path vector protocol, which keeps track of the entire path to a
destination. A common one is BGP.

§7.1.1 Detecting negative cycles

So far, we’ve been relying on the assumption that G has no negative cycles. What if
we didn’t have this assumption and instead wanted to detect whether G has a negative
cycle? One solution is to add a new vertex t and connect all nodes to it with edges of
cost 0. Then we look for a negative cycle that can reach t. To do so, we check if any
updates happen after round n − 1 of Bellman-Ford.

Proposition 7.4

There is a negative cycle if and only if OPT (v, n) ≠ OPT (v, n − 1) for at least one
node v.

Proof. It only remains to show the forward direction. We’ll use the contrapositive, i.e.,
we assume that OPT (v, n) = OPT (v, n− 1) ∀v. Then OPT (v, k) = OPT (v, n− 1) for all
k ≥ n − 1, because of our update rule. So limk→∞OPT (v, k) = OPT (v, n − 1) > −∞, and
there can’t be negative cycles.

§8 Monday, September 19

§8.1 Dynamic programming III

Let’s wrap up dynamic programming today. Recall that last time we tried to solve
the problem of shortest paths with negative edge weights (but nonnegative cycles). We
started with a simple and correct recurrence:

OPT (v) = min
(v,v′)∈E

c((v, v′)) +OPT (v′).

But we lacked a computation order to be able to turn this into a true computational
solution. We remedied this by introducing the maximal number of hops k in a given path

— which gave us our computation order — and then we tweaked things even further to
reduce our solution’s space complexity.
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§8.1.1 Edit distance / sequence alignment

Problem 8.1. Given two strings x, y of lengths n,m, how “similar” are they?

There are some pretty natural candidates here:

1. Hamming distance (i.e., number of entries in which x and y differ), possibly
weighted.

2. Longest (perhaps consecutive) common substring.

3. Number of “operations” needed to transform x to y.

In general, you may want to consider a natural model or “process” which probabilis-
tically generates y from x. This may suggest particular measures, which detect the
likelihood of y being noisily generated from the ‘ground truth’ x. That is, what is the
assumed generative process that might cause these noisy observations? Based upon this,
one can select a measure.

Today, we’ll be considering candidate #3, which turns out to subsume #1 and #2
(without the requirement that the common substring be consecutive). First, we need to
be precise about the operations we allow. They will be like so:

• Insert character into x: cost α

• Delete character from x: cost α

• Replace a character: cost β.

An alternative view is that of aligning x with y. So you take their characters in order,
insert blanks in both, and you have a cost of α per blank and β per misaligned character.

Remark 8.2. Applications here include spell checking and DNA sequence alignment.

So let’s attack this with dynamic programming. We’ll define OPT (i, j) to be the
minimum cost for aligning x[1, . . . , i] with y[1, . . . , j]. Then there are three options for
OPT (i, j):

• Match x[i] with blank (and pay α).

• Match y[j] with blank (and pay α).

• Match x[i] with y[j] (and pay β if they differ).

As we match the rest of the strings optimally, we’re left with an obvious recurrence and
with the base cases OPT (i,0) = OPT (0, i) = i ⋅ α.

Remark 8.3. Dynamic programming can almost always be viewed as a shortest path
computation in a suitable graph on subproblems. When maximizing, flip signs of all “values”
to “negative costs.” Table computation usually gives a DAG, meaning no cycles, and in
particular no negative cycles. So most table computations are in retrospect optimized
Bellman-Ford.

§8.2 Max-flow / min-cut

Problem 8.4 (Max-flow). Fix a graph G = (V,E) with source s ∈ V , sink t ∈ V , and a
capacity for each edge ce ≥ 0. (For now we’ll assume capacities are integral.) Now route
as much “flow” as possible from s to t using edges.
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Definition 8.5 — An s-t flow is a mapping f ∶ E → R≥0 with the following
properties:

1. fe ≥ 0 ∀e (nonnegativity),

2. fe ≤ ce ∀e (capacity),

3. ∑(u,v) f(u,v) = ∑(v,u) f(v,u) ∀v ∉ {s, t}.

The value of a flow f , denoted ∆(f), is the total flow out of s (equivalently, the
total flow into t).

An alternative definition is to give s-t paths P1, . . . , Pk with flow values α1, . . . , αk ≥ 0
such that ∑Pi∋e αi ≤ ce. Obviously, the value of this flow is ∑i αi.

Definition 8.6 — An s-t cut is a partition (S,S) of V with s ∈ S, t ∈ S. The
capacity of (S,S), denoted c(S,S), is the sum of capacities of edges from S to S.

Problem 8.7 (Min-cut). Find an s-t cut minimizing c(S,S).

Min-cut and max-flow seem well-motivated enough to begin with — as flowing through
graphs is pretty common — but it furthermore turns out that lots of important problems
reduce to min-cut / max-flow, making them even more worthy of our attention. In fact,
it even turns out that they’re equivalent!

Theorem 8.8 (Ford-Fulkerson)

Let G = (V,E) be a graph with edge capacities ce ≥ 0 and s, t ∈ V a source and sink.
Then:

1. There is a poly-time algorithm computing a max s-t flow f∗ and minimum s-t
cut (S∗, S∗);

2. Furthermore, ∆(f∗) = c(S∗, S∗);

3. If all ce are integral, then all f∗e are integral.

§8.2.1 Application: maximum bipartite matching

Problem 8.9 (Maximum bipartite matching). Fix a bipartite graph G = (V,E), i.e.,
with V =X ⊔ Y and E ⊆X × Y . Find a maximum cardinality matching in G.

Recall that a matching is a subset of edges E′ ⊆ E such that no vertex is incident on
more than one edge.

Then we can see that maximum bipartite matching reduces to max-flow as follows:

• Add a source s, connect to all x ∈X with capacity 1.

• Add a sink t, connect from all y ∈ Y with capacity 1.

• Keep all edges E ⊆X × Y , and give them capacity ∣Y ∣ (though just 1 would work,
and make the proof slightly harder).

18



CS 670: Advanced Analysis of Algorithms Fall 2022

§9 Wednesday, September 21

§9.1 Ford-Fulkerson

We’ll spend most of today proving the famous Ford-Fulkerson theorem. Let’s restate it
first.

Theorem 9.1 (Ford-Fulkerson)

Let G = (V,E) be a graph with edge capacities ce ≥ 0 and s, t ∈ V a source and sink.
Then:

1. There is a poly-time algorithm computing a max s-t flow f∗ and minimum s-t
cut (S∗, S∗);

2. Furthermore, ∆(f∗) = c(S∗, S∗);

3. If all ce are integral, then all f∗e are integral.

Remark 9.2. Point 3 of Ford-Fulkerson does not imply that every max-flow has integral
flow values when the capacities do, simply that some max-flow does.

Here’s a high-level idea to implement the poly-time algorithm: while there is an s-t
path P whose edges are not saturated, pick such a path, and add to it as much flow as
possible with capacity constraints. Unfortunately, this turns out not to work at all: we
might get stuck before we find a max flow.

The solution is to be able to undo flow on an edge, which can be regarded as sending
flow on the edge in the opposite direction. Importantly, this idea makes use of the
residual graph Gf with respect to a flow f , which is defined as follows:

1. For every e with fe < ce, it contains a “forward edge” with residual capacity ce − fe.

2. For every edge e = (u, v) with fe > 0, Gf contains the “backward edge” (v, u) with
capacity fe.

Algorithm 9.3 (Ford-Fulkerson) — Start with f = 0. While Gf contains an s-t path
p, augment f along p.

Now we should define what it means to augment a flow f by a path p in a residual graph,
but it really means what you think it means. Namely, let δ = mine∈p c

′
e. Then for all

e = (u, v) ∈ p, increment fe by δ if e is forward and decrement f(v,u) by δ if e is backward.
Now that we’ve specified our algorithm, we need to think about correctness and

complexity. First things first: let’s prove correctness and show that Ford-Fulkerson even
outputs a valid flow. We proceed by induction on the iterations. When f = 0, we certainly
have a valid flow. Now the inductive step:

Non-negativity: If e = (u, v) is a backward edge, then fe gets decremented by δ. But fe ≥ δ, since
the minimum used to compute δ included c′e.

Capacity: If e is forward, then fe increases by δ, but the minimum includes c′e = ce − fe, so
δ ≤ ce − fe.
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Conservation: Consider a node v ∈ P with e entering v and e′ leaving v. There are four cases
based on which of e, e′ are forward/backward. One case is with e forward and e′

backward. Along e, incoming flow to v increases by δ. For e′, we subtract δ from
e′, so δ less flow enters v along e′. So total incoming & outgoing flow stays the
same. Likewise for the other three cases.

Also, note that integrality of the weights in our output flow f follows easily from
induction. To think about optimality, let’s revisit the max-flow / min-cut connection.

Proposition 9.4

For any flow f and s-t cut (S,S), ∆(f) ≤ c(S,S).

This seems like the kind of thing you don’t even need to prove, but we’ll prove it later
on by showing something even stronger. A consequence is that if we find an f∗ and S∗

with ∆(f∗) = c(S∗, S∗), then this proves both that f∗ is a max-flow and (S∗, S∗) is a
min-cut. This is known as an instance of duality, which we’ll discuss further when we
get to integer programming in a few weeks.

Here’s another lemma.

Lemma 9.5

For any s-t flow f and any s-t cut (S,S),

∆(f) = ∑
e out of S

fe − ∑
e into S

fe.

The proof is really just 3 minutes of symbol pushing. – David

Proof of Lemma 9.5.

∆(f) = ∑
e out of s

fe

= ∑
v∈S

( ∑
e out of v

fe − ∑
e into v

fe)

= ∑
e out of S

fe − ∑
e into S

fe

Now it’s time to show that our algorithm is optimal. Consider the algorithm at
termination,4 and define S to be the collection of vertices that are connected to v in the
residual graph Gf . By our lemma, ∆(f) = ∑e out of S fe −∑e into S fe. For all e out of S,
fe = ce; otherwise, the other endpoint of e could also be reached in the residual graph.
Similarly, for all e into S, fe = 0; otherwise, there would be a backward edge e leaving
S in Gf . So ∆(f) = ∑e out of S fe = c(S,S), meaning f is a max s-t flow and (S,S) is a
min s-t cut.

All that’s left are complexity considerations. For now, let’s assume the ce are integral.
Then each δ ≥ 1 and so each iteration in the while loop increases ∆(f) by at least

4We’ll see shortly that the algorithm terminates when weights are integral or rational, but not necessarily
when weights are irrational. (This begs the question of how the computer is even working with
irrationals, but you can invoke an oracle for the sake of just thinking about termination.)
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1. Thus the loop terminates. In particular, the number of iterations is bounded by

∑e out of s ce. But that’s pseudo-polynomial runtime, since the ce were given to us as
numbers (i.e., using log(ce) many bits). Furthermore, this pseudo-polynomial behavior
can even be materialized with slightly perverse networks. Simply put, the algorithm – as
we’ve specified it – is not efficient.

It can be made polynomial time, however, by using the widest path (largest δ) in each
iteration, and strongly polynomial by using shortest path (giving rise to the Edmonds-
Karp algorithm). If capacities are irrational, then running plain Ford-Fulkerson might
not terminate at all. In general, note that the runtime is Θ(ĉ(M + N)), where ĉ is
the number of iterations in the while loop. This is a consequence of the fact that each
iteration is dominated by a run of BFS or DFS to find a path in the residual graph,
which has runtime Θ(M +N).

§10 Monday, September 26

§10.1 Edmonds-Karp

We’ll be analyzing the Edmonds-Karp algorithm today; recall that it’s the variant of
Ford-Fulkerson which at each iteration selects the shortest path in the residual graph. The
goal here is to get from the pseudo-polynomial time of Ford-Fulkerson to true polynomial
time. What’s the intuition? It’s that at each iteration of the algorithm, the shortest paths
will never become shorter, and they’ll actually become strictly longer “often enough.”

More formally:

1. The shortest s-t path never gets shorter.

2. Between any two consecutive saturations of an edge (fe = ce or fe = 0), the length
of the shortest s-t path strictly increases.

Note that every 2m + 1 consecutive iterations must contain two iterations where the
same edge e has fe = ce or fe = 0. This is because each iteration saturates at least one
edge. Assuming points 1 and 2 above, and noting that the shortest path length can
increase at most n times, we have a total of O(nm) iterations and thus a running time
of O(nm2).

Now let’s start proving things.

Lemma 10.1

Let P,Q be augmenting paths in iterations i < j, with the property that Q pushes
flow on some edge e in the opposite direction of P , and for each iteration i′ ∈ (i, j),
the flow path Pi′ does not push flow opposite to either P or Q along any edge. Then
∣Q∣ > ∣P ∣.

Proof. Bit technical.

Now, assuming the lemma, let’s show that the shortest path distance never shrinks.
Consider Pr, Pr+1. Either Pr+1 was available in iteration r, in which case it must be no
shorter than Pr, or the conditions of Lemma 10.1 are satisfied, and we’re done.

Now suppose that e is saturated in iterations r < r′. At some point r′′ ∈ (r, r′), e must
have been used in the opposite direction. We can keep looking at earlier times until the
conditions of Lemma 10.1 are met, at which point we’re done.

So we’re finished with the analysis of Edmonds-Karp!
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§10.2 Bipartite matchings II

Recall that we already have an efficient algorithm for finding maximal matchings in
bipartite graphs (via Edmonds-Karp on the associated flow problem to a bipartite graph).
But there are still lots of natural questions to ask about matchings in bipartite graphs.
One is: can we characterize bipartite graphs that have no perfect matchings?

Let’s say we have G = (V,E) with V =X ⊔ Y , ∣X ∣ = ∣Y ∣, and E ⊆X × Y . One obvious
obstacle would be to have S ⊆X with ∣S∣ > ∣N(S)∣, where N(S) = {u ∣ ∃v ∈ S, (u, v) ∈ E}.
If such a set S exists, then clearly G can’t have a perfect matching.5

Is the converse true?

Theorem 10.2 (Hall’s theorem)

G has a perfect matching if and only if ∣S∣ ≤ ∣N(S)∣ for all S ⊆X.

Proof. The forward direction is immediate. For the reverse direction, we assume G has
no perfect matching and show there is an S ⊆X with ∣N(S)∣ < ∣S∣. We’ll prove this via
max-flow / min-cut. Because G has no perfect matching, the max flow for G̃6 has value
at most n − 1. Then there’s a min s-t cut (A,A) of capacity at most n − 1.

Now we characterize c(A,A). Note that there can be no edge from A ∩X to A ∩ Y ,
because those have capacity ∞. That leaves edges from Y ∩ A to t and from s to
X ∩A. There are ∣X ∩A∣ edges from s to X ∩A and ∣Y ∩A∣ edges from Y ∩A to t. So
∣X ∩A∣ + ∣Y ∩A∣ ≤ n − 1.

Now define S ∶= X ∩ A. Then ∣S∣ = ∣X ∩ A∣ = n − ∣X ∩ A∣. And N(S) ⊆ Y ∩ A, so
∣N(S)∣ ≤ ∣Y ∩A∣. Then

n − 1 ≥ ∣Y ∩A∣ + ∣X ∩A∣
n − 1 ≥ ∣N(S)∣ + n − ∣S∣

∣N(S)∣ ≤ ∣S∣ − 1.

So we’re done.

Corollary 10.3

Every d-regular bipartite graph d ≥ 1 has a perfect matching.

Recall that d-regular bipartite graphs are those in which all nodes have degree exactly d.

Proof of 10.3. We use Hall’s theorem. Fix a set S ⊆ X. It has d∣S∣ edges sticking out.
And at least d unique vertices must be hit by these edges, owing to their degrees being
d.

Furthermore, by repeatedly removing matchings, we can see that d-regular bipartite
graphs have at least d disjoint perfect matchings.

Now let’s consider the problem of edge-disjoint paths. Given a graph (undirected or
directed) with distinguished vertices s, t, the problem is to find a maximum number
of s-t paths P1, . . . , Pk not sharing any edges. Note that we can reduce to max-flow by
giving every edge capacity ce = 1.

5A perfect matching would restrict to an injection S → N(S), but there’s a cardinality obstruction to
any such injection.

6This is the graph associated to G for the flow problem, with edges s→X and Y → t of capacity 1, and
with edges in E having capacity ∞.
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§11 Wednesday, September 28

§11.1 Edge-disjoint paths

Recall the edge-disjoint paths (EDP) problem.

Problem 11.1 (Edge-disjoint paths). Given a graph G = (V,E), undirected or directed,
with distinguished vertices s, t ∈ V , find a maximum number of s-t paths not sharing any
edges.

We mentioned last time that this reduces to max-flow by giving all the edges in V a
capacity of 1 and finding an integral max s-t flow. Then we need to “extract the paths”
from this flow. This path extraction step is captured by a path decomposition result.

Lemma 11.2

Given any acyclic (integer) s-t flow f , one can compute – in polynomial time – k ≤m
s-t paths P1, . . . , Pk with associated (integer) values a1, a2, . . . , ak such that

fe = ∑
i ∣ e∈Pi

ai ∀e.

Proof. We use a greedy algorithm: in each iteration i, find an s-t path pi where all edges
carry flow. Subtract bottleneck amount, call that ai. Flows stay flows after subtraction,
so we can never get stuck early. And k ≤m because each iteration removes an edge from
the flow f .

Lemma 11.3

For any (integer) flow f , there is an acyclic (integer) flow f ′ with ∆(f ′) = ∆(f) and
f ′ can be obtained efficiently from f .

Proof. We repeatedly remove flow around a cycle.

So, with these two lemmas, we’ve made precise our previous step of “extracting paths”
in the EDP reduction. To find the paths in the EDP reduction, apply path decomposition
lemma to get an integer path decomposition of the integer max-flow f . This gives paths
P1, . . . , Pk with all ai = 1 (as that’s the only integer > 0 and ≤ ce). Because ce = 1, the Pi
are then disjoint. And k is maximum because otherwise we could get a better flow using
k + 1 disjoint paths.

Corollary 11.4 (Menger’s theorem, edge version)

The maximum number of edge-disjoint s-t paths equals the minimum number of
edges whose removal disconnects s and t.

If we replace each instance of “edge” with “vertex” in the previous theorem, we get the
vertex version of Menger’s theorem.
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§11.1.1 Circulations

It turns out that we can naturally generalize the max-flow problem to so-called
circulations, in which each node v specifies its demand d(v), i.e., how much flow
it wants to absorb. (When d(v) < 0, then the vertex v is supplying flow.) We must have

∑d(v) = 0, otherwise satisfying each v is impossible.
This has an easy reduction to Max-Flow; add a super-source and super-sink, with

edges of capacity −d(v), d(v) to/from v.

§11.2 Image / graph segmentation

Problem 11.5. We are a given a graph G with node scores av, bv and edge strengths
pe. Here av captures how much v should belong to one side of a partition (foreground,
conservative, UCLA, etc.), bv captures how much v should belong to the other side
(background, liberal, USC, etc.), and p(u,v) measures how likely nodes u and v are to
agree.

More explicitly, we have the following combined objective function: the score of a
partition (S,S) is

Q(S) = ∑
v∈S

av +∑
v∉S

bv − ∑
u∈S,v∉S

pu,v.

The goal is to find (S,S) maximizing Q(S).

We want to find a cut in a graph, so a natural place to start thinking is min-cut. One
issue here is that we have positive and negative terms in our objective, so it’s not a clear
minimization or maximization problem. Fortunately, we can rewrite Q(S) to clean things
up a bit:

Q(S) = ∑
v∈V

av + ∑
v∈V

bv − (∑
v∉S

av +∑
v∈S

bv + ∑
u∈S,v∉S

pu,v).

Now we have Q(S) = c −R(S) for c simply a constant. Then the name of the game is to
minimize R. Now, with some thinking, we have a reduction.

We add an s with edges of cost av to all v ∈ V . Then we add a t with edges of cost bv
for all v. For any s − t cut, the capacity of the cut is precisely R(S). So the min s-t cut
minimizes R(S) and thus maximizes Q(S).

Remark 11.6. This is a pretty general technique whenever you need to find a partition and
there are pairwise costs for putting things on opposite sides of the partition. For instance, if
two vertices must be on the same side, then you can place an edge between them of infinite
capacity.

§12 Monday, October 3

§12.1 NP hardness

We’ll begin discussing the notions of computational hardness and impossibility, including
NP hardness in particular. Before we get there, though, we need to be more precise about
the setup of problems and solutions.

§12.1.1 What is a “problem”?

In the context of impossibility and hardness results, we often study decision problems,
i.e., those of the form: compute a function f ∶ {0,1}∗ → {0,1}. We often identify the
problem with the set f−1(1) ∶= f−1(“Yes”), which is known as a language.
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Example 12.1

How can we turn max-flow into a decision problem?

Solution. Encode a flow problem in binary, along with a target value F . Have f output
1 if there exists a valid s-t flow f with ∆(f) ≥ F , and 0 otherwise.

Given a solution to ‘vanilla’ max-flow, we can of course solve this decision version, i.e.,
by simply computing f∗ and comparing ∆(f∗) with F . Conversely, given a solution to
the decision problem we can find ∆(f∗) with a linear search over N (or binary search
over the capacity of s, if we care about efficiency). The point here is that even these
seemingly simple decision problems really do capture the essence and complexity of our
original problems. The decision versions are just as hard as the original problems!

Remark 12.2. In general, to convert a maximization problem to a decision problem, add
an argument k and ask: Is it possible to get at least k? Likewise for minimization problems
(at most k?).

§12.1.2 What does it mean to “solve” a problem?

What should it mean for an algorithm to “solve” a problem X, defined by the function
f? Well, it should just compute the the function f . (In particular, it will need to halt on
every input.)

Definition 12.3 — Let P denote the class of all problems X that have a polynomial-
time solution. (By polynomial-time we mean there is a polynomial p such that on
input x, the algorithm takes time at most p(∣x∣).)a

aThis is exactly the same as requiring that the algorithm be in O(p) for a polynomial p. Can you
see why?

Remark 12.4. What’s the model of computation here? We’re not going to say much about
this, but for now you can assuming it’s either the Turing machine or C++. By the extended
Church-Turing thesis, it doesn’t really matter what we pick.

Definition 12.5 — Let NP denote the class of non-deterministic polynomial time
problems with an efficient certifier. Intuitively, these are problems for which a
solution can be verified efficiently.

Definition 12.6 — A function B(x, y) is an efficient certifier for the language
X ⊆ {0,1}∗ if it has the following properties, for fixed polynomials p, q:

1. If x ∈X, there exists a y with ∣y∣ ≤ q(∣x∣) such that B(x, y) = “Yes”.

2. If x ∉X, then B(x, y) = “No” for all y.

3. B(x, y) always runs in time p(∣x∣ + ∣y∣).

When B(x, y) = “Yes”, we call y a certificate for x.
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Proposition 12.7

P ⊆ NP

Proof. Construct the certifier B so that it ignores certificates and solves x outright.

Definition 12.8 — Let EXP denote the class of all problems that have an exponential-
time solution, i.e., an algorithm in O(2p(n)) for p a polynomial.

Proposition 12.9

NP ⊆ EXP

Proof. Try all 2q(∣x∣) candidate certificates, and run B on them. This takes time
O(2q(∣x∣) ⋅ p(∣x∣ + q(∣x∣))).

P is a pretty organic thing to define, but what about NP? Well, NP consists of all
problems whose solutions we can recognize in polynomial time. Then we claim that NP
consists of pretty much all problems we could ever hope or want to solve. After all, how
could you begin a search for something if you weren’t even able recognize what you were
looking for?

§12.2 Reductions

So NP contains many problems we’d like to solve. Then we want to know whether doing
so efficiently is possible. Is NP ⊆ P? Equivalently, is P = NP? This has been open for
decades – it’s the biggest open problem in computer science, and probably in all of math
as well. One observation is that if P ≠ NP, then the candidate problems for not being
poly-time solvable would be the “hardest” problems in NP. We can use reductions to
make this formal.

Definition 12.10 — A Karp reduction in polynomial time is a function
f ∶ {0,1}∗ → {0,1}∗ such that

1. f runs in polynomial time,a

2. if x ∈X, then f(x) ∈ Y ,

3. if x ∉X, then f(x) ∉ Y .

If there is such an f , we write X ≤p Y .

aMore appropriately, f has a polynomial-time implementation.

Proposition 12.11

If X ≤p Y , then Y is “harder” than X. In particular, if Y ∈ P then X ∈ P, and if
X ∉ P then Y ∉ P.
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Definition 12.12 — A problem X is NP-hard if Y ≤p X for all Y ∈ NP. A problem
X is NP-complete if X is NP-hard and X ∈ NP.

It’s pretty easy to see that there are NP-hard problems, but it’s not at all obvious that
there exist NP-complete problems. Fortunately, they do turn out to exist.

Theorem 12.13 (Cook-Levin)

SAT, and even 3-SAT, are NP-complete.

Lemma 12.14

Reductions are transitive. (X ≤p Y ) ∧ (Y ≤p Z) Ô⇒ X ≤p Z.

Proof. Straightforward.

Corollary 12.15

If X is NP-hard and X ≤p Y , then Y is NP-hard.

§13 Wednesday, October 5

§13.1 Reduction Boogaloo

§13.1.1 Independent Set

The Independent Set problem is that of finding a largest independent set in a graph
G (i.e., a largest set S of vertices with no edges between any v, v′ ∈ S). As usual, we can
turn this into a decision problem by asking whether the graph G has an independent set
of size at least k.

Theorem 13.1

Independent Set is NP-complete.

Proof. First we show Independent Set is in NP. Easy enough – the certificate is a
collection of vertices of size at least k that’s independent.

To show that it’s NP-hard, we’ll need to reduce 3-SAT to it. Namely, we need a function
f that maps formulas Φ to instances (G,k) of Independent Set which is efficient and
such that Φ ∈ 3−SAT ⇐⇒ f(Φ) ∈ Independent Set. So let’s say Φ has n variables
x1, . . . , xn and m clauses C1, . . . ,Cm. In 3-SAT, the decision is for each Cj , which literal is
designated to satisfy Cj . Of course, we cannot simultaneously pick contradictory literals.
In Independent Set, the decision is which nodes to pick; edges prevent us from picking
pairs simultaneously.

So we have a reduction: for each clause, generate nodes for its literals. Add edges
between literals that are negations of each other, and edges between literals that are
in the same clause (so we don’t get extra credit for satisfying the same clause “twice”).
Finally, set k =m, so we indeed satisfy all the clauses.
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It’s clear that this construction is poly-time. If Φ is satisfiable, pick a true literal
from each clause. The corresponding nodes form an independent set of size k =m in G.
Conversely, if we grab an independent set in G and set its literals to true, then we satisfy
Φ.

§13.1.2 Vertex Cover

The problem here is that you give me a graph and I try to cover the edges by selecting
the minimum number of vertices. (An edge is covered if at least one of its endpoints has
been selected.) We again turn this into a decision problem by asking whether this can be
done using k or fewer vertices.

Problem 13.2 (Vertex Cover). Given a graph G and integer k, does G contain a
vertex cover of size at most k?

Theorem 13.3

Vertex Cover is NP-complete.

Proof. It’s easy to see that it’s in NP– you give me a proposed vertex cover and I check
it. That it’s NP-hard follows immediately from the following lemma: S is a vertex cover
if and only if its complement is an independent set. This is easy enough to prove once
you know to think about it. So the reduction is just (G,k)↦ (G,n − k).

§13.1.3 Set Cover

Problem 13.4 (Set Cover). Given a universe U of n elements and sets S1, . . . , Sm ⊆ U ,
determine whether there is a set cover of size k, i.e., k subsets Sj1 , . . . , Sjk such that

⋃i Sji = U .

This problem pops up everywhere. And like any problem that pops up every-
where, it’s NP-hard. – David.

Theorem 13.5

Set Cover is NP-complete.

Proof. This is in NP; you give me the collection of subsets and I check that they cover.
Also Vertex Cover reduces to it pretty easily; you have one set for each vertex,
consisting of the edges that it touches.

§13.1.4 3-Dimensional Matching

Problem 13.6 (3-Dimensional Matching). Given sets A,B,C of size n, along with
a collection X ⊆ A × B × C of triples, is there a subset T ⊆ X that forms a perfect
3-dimensional matching?7

This simultaneously has the flavor of a packing and a covering problem:

1. Packing: Can we find n disjoint triples?

2. Covering: Can we cover all elements with n triples?

7i.e., each e ∈ A ∪B ∪C is in exactly one triple in T .
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Theorem 13.7

3-Dimensional Matching is NP-complete.

Proof start. It’s easy to see that it’s in NP. Now we reduce from 3−SAT. We’ll encode
truth values of variables in choices of triples. Because variables can occur in multiple
clauses, we need “consistency gadgets” to ensure that they always take the same value.
We’ll pick up here next time.

§14 Monday, October 10

§14.1 Reduction Boogaloo II

We started off by completing the proof of NP completeness for 3-Dimensional Matching.
It was fairly involved, and I didn’t write it down.

§14.1.1 Subset-Sum

Recall the Subset-Sum problem: given a1, . . . , an ∈ N and b ∈ N, is there an S ⊆ {1, . . . , n}
with ∑i∈S ai = b? We’ve already shown that it reduces to Knapsack, though that doesn’t
buy us much right now.

Theorem 14.1

Subset-Sum is NP-complete.

Proof. This is in NP – you give me S and I check that it works. Now we reduce from
3DM, or rather X3C (i.e., given a universe U of size 3n and m triples in U , is there
an exact covering of U?). To show X3C ≤p Subset-Sum, fix a universe U with triples
T1, . . . , Tm. For each triple Tj , generate an integer aj that has 1 in exactly the digits i
such that xi ∈ Tj . (So each aj has exactly 3 non-zero digits.) And the target number b
consists of 3n ones. By interpreting numbers in base m + 1, we can ensure no carries and
thus that this works in both directions.

§14.2 Linear programming

Definition 14.2 (Linear programming) — Given a matrix A ∈ Rm×n and b ∈ Rn, find
a solution to Ax ≤ b, entry-wise. That is, find x1, . . . , xn so that

a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

⋮
am1x1 + am2x2 + . . . + amnxn ≤ bm

Of course, this looks very similar to actually solving systems of linear equations. In
fact, it subsumes solving systems of linear equations, by writing Ax ≤ b and (−A)x ≤ −b
in the same matrix. More generally, by multiplying any inequality with -1, we can mix ≥
and ≤ in Definition 14.2. We can also generalize even further to maximize/minimize c ⋅ x
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subject to Ax ≤ b. This is done by performing binary search for optimal values of c ⋅ x,
with the additional constraint that c ⋅ x ≤ γ on the decision LP.8

Note that the decision version of LP (given A, b is there an x with Ax ≤ b?) is in NP.
Our certificate is x; this actually makes use of the non-trivial fact that polynomially
many digits in x will be enough, so a certificate has polynomial length.

Next time, we’ll use duality to show that LP is in co-NP.

§15 Wednesday, October 12

§15.1 Linear programming II

Last time we learned about linear programming – now that we have a new problem, the
most natural question to ask is whether it can be efficiently solved (i.e., in polynomial
time). This was an open question for more than a decade, but it was eventually resolved
in the positive with the ellipsoid method. Another method, which is very frequently used,
is the simplex method. It turns out to have exponential time in the worst case, but it’s
quite fast in practice.

We won’t delve into the details of any of these methods right now – see CS 675 for
more – but it’ll be useful at least to know that there’s a black-box method for efficiently
solving linear programs.

Example 15.1 (Diet problem)

Let’s say there are 3 nutrition groups: sugar, vitamins, and protein. There are also
3 foods: ramen, pizza, and chicken nuggets. We have a matrix A recording the
nutrition information of each food: aij units of nutrition i per unit of food j. So ap,r
is the amount of protein in ramen, ps,p is the amount of sugar in pizza, and so on.

Let’s also say we have costs per unit for each of the foods. Now minimizing our
grocery bill subject to some nutrition requirements on total sugar, vitamins, and
protein is a linear program. So we can solve it with an LP solver.

Example 15.2 (Maximum s-t flow)

We have variables fe for each edge. Then the axioms for non-negativity, capacity, and
conservation are all linear. Our objective is also linear, so this is a linear program!

Remark 15.3. We don’t have the integrality guarantee of Ford-Fulkerson with this solution
to max-flow! Can we somehow add a constraint to our LP solver that requires that the
solution be integral? Probably not. Linear programming with the requirement that solutions
be integral is NP-complete. After all, you can pretty easily reduce things like vertex cover to
integral LP (by imposing the requirement that your variables are in {0,1}).

Sometimes – perhaps even often – when solving combinatorial problems, it is convenient
or necessary to have many constraints (i.e., exponentially many, even an infinite number).
Clearly this is problematic. However, such LPs can sometimes be solved in polynomial
time; in particular, when you have the following two:

1. A poly-time algorithm for deciding whether a proposed solution x satisfies all
constraints (i.e., a “membership oracle”).

8This feels a bit bogus to me.
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2. A poly-time algorithm for finding a violated constraint if one exists (i.e., a “separa-
tion oracle”).

This isn’t just a nice little aside: it’s actually a really important theorem.

§15.2 LP duality

Let’s motivate and arrive at LP duality using an example. Say we have an LP problem
of the form:

minimize 3x1 + 4x2 + 2x3

such that x1 + 2x2 + x3 ≥ 3

0x1 + x2 + 2x3 ≥ 4

3x1 + x2 + x3 ≥ 5

To get a lower bound on the optimum, we can multiply rows with α1, α2, α3 so long as
the sum of scaled coefficients is at most the coefficient in the objective. To get the best
lower bound, we want to maximize the sum of scaled right-hand sides.

So our new problem – to get the best possible lower bound – is

maximize 3α1 + 4α2 + 5α3

such that 1α1 + 0α2 + 3α3 ≤ 3

2α1 + 1α2 + 1α3 ≤ 4

1α1 + 2α2 + 1α3 ≤ 2

So this process gives us a new linear program, called the dual linear program of the
original one. Notably, minimization has turned into maximization, our objective and our
constraints switched, and our matrix of linear coefficients became its transpose. Then
taking duals twice recovers our original primal linear program.

Theorem 15.4 (Weak duality)

For all x feasible for the primal LP and all y feasible for the dual LP, c ⋅ x ≥ b ⋅ y.

Proof. Let’s use ⋅ for inner products and × for matrix multiplication. We have:

c ⋅ x = cT × x
≥ (AT × y) ⋅ x
= (yT ×A) × x
≥ yT × b
= b ⋅ y.

Notably, we made use of nonnegativity of x and y in each inequality.

Theorem 15.5 (Strong duality)

min
Ax≥b
x≥0

c ⋅ x = max
AT y≤c
y≥0

b ⋅ y.

Proof. Take CS 675 :)
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§16 Monday, October 17

Last time we talked about linear programming (LP) and about duals. Informally, duals
are like proof that you can’t do better in your original, or primal, LP. We also mentioned
that under a unimodularity condition on matrices, LPs are guaranteed to have some
integral solutions (though an LP solver may not be guaranteed to return an integral
solution).

§16.1 Approximation algorithms

Let’s begin discussing approximation algorithms: the motivation here is always that
we don’t have the resources to solve the problem outright (i.e., optimally). As we’ve
mentioned, NP-hard problems show up all over the place, giving us good reason to search
for efficient approximations. (Or you might even have a cubic-time solution and be willing
to approximate in order to get something like loglinear time.)

Here’s a subtle point: in order to even speak about approximating a problem like
3-SAT, we would need to cast it from a decision problem back to an optimization problem
(i.e., where the goal is to satisfy as many clauses as possible).

Approximation is really only meaningful if you’re trying to maximize or
minimize a quantity. If it’s just a yes/no question, approximation doesn’t
mean anything. – David.

Now let’s formalize approximation.

Definition 16.1 — For a minimization problem with objective c, an algorithm A is
an α-approximation (α ≥ 1) if for all inputs I,

c(A(I)) ≤ α ⋅ c(OPT(I)).

Notably, we can allow α to be a function of ∣I ∣, like α = log(∣I ∣).

Implicitly, we’ll be interested in polynomial-time approximation algorithms. In principle,
you could be excited about a singly exponential approximation to problem that’s 2-EXP-
hard, but we won’t really be discussing cases like this.

Remark 16.2. A difficulty in analyzing approximation algorithms is that characterizing
α requires knowing something about OPT. But if you really knew a lot about OPT, you
could probably just solve the problem to begin with. So often times you need two steps here:
getting a good bound on OPT, and then showing that your algorithm isn’t too much worse
than that.

Usually, algorithm design actually starts from a bound on OPT and then derives an
algorithm from that bound. Coming up with a good bound on OPT is often half the
battle.

Remark 16.3. Why did we take α ⋅ c(OPT(I)), rather than α + c(OPT(I))? One reason
is that we want our guarantees to be independent of the units that we use to measure
our objective. Furthermore, you might have a problem in which this additive α cannot be
bounded at all (i.e., does not exist), even though you have a very natural multiplicative α of
2. There are some relatively rare exceptions, though, in which you want an additive factor,
rather than (or perhaps along with) a multiplicative one.
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Example 16.4 (Vertex Cover)

Given an undirected graph G, the objective is to cover all edges using as few vertices
as possible. Find an approximation algorithm.

Proof. As discussed, we begin with a lower bound on the optimal solution. Here’s a
lemma: if M is a matching in G (i.e., disjoint collection of edges), and S is a vertex
cover, then ∣M ∣ ≤ ∣S∣. Proof: to be a vertex cover, S must contain at least one endpoint
for each e ∈M . And no vertex is an endpoint of two edges in M , as M is a matching.

So we have our lower bound. And this gives rise to an approximation algorithm: find
a maximal matching M , and for each edge e ∈ M , select both endpoints. Call these
endpoints S. This is a vertex cover: by maximality of M , each edge must have one of its
endpoints in S, otherwise we could add it to M . So then we have

∣S∣ = 2∣M ∣ ≤ 2 ⋅OPT.

Now how do we get a maximal matching in G? Just be greedy! Maximality is a
local condition, so we don’t need to be that clever: pick disjoint edges until you can’t
anymore.

Remark 16.5. Some context here: no algorithm with better than a 2-approximation is
known, and beating a 7/6-approximation is NP-hard.

§16.1.1 (Metric) Traveling Salesman

Problem 16.6. Given an n×n distance matrix di,j inducing a metric on {1, . . . , n}, find
a tour — starting at some v ∈ {1, . . . , n}, visiting all points and returning to v — of
minimum total length.

Proposition 16.7

TSP is NP-complete.

Proof. This is in NP – you give me the tour and I check that its total distance is less
than the target value k.9 To see that it’s NP-hard, you can reduce from Hamiltonian
cycles, which we haven’t discussed.

Remark 16.8. Euclidean TSP is the setting in which points are explicitly given as d-
dimensional (say, integer) coordinates, whose distances are the usual Euclidean distances.
Even this is NP-hard, but it’s not actually known to be in NP! The issue here has to do with
irrational distances, and the number of digits you need to compute to compare a sum of
irrationals with an integer. So this is a bit annoying, but it’s worth mentioning as a case in
which something is “obviously” in NP but turns out to perhaps not be!

So, in the search of an approximation algorithm for TSP, let’s again think of a lower
bound for the optimum. Some obvious candidates are “longest edge in G” or “sum of
the cheapest (n − 1) edges in G” or “radius of G”, but those are too local. You can
maliciously create examples where these give terrible lower bounds for the optimum by

9Since we’re considering NP-completeness, we need to move back to the decision version of TSP!
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adding local features to your graph that makes this bound very low and making the rest
of the graph gnarly.

A more global lower bound would be to look at an MST!

Lemma 16.9

c(MST ) ≤ c(OPT).

Proof. OPT itself is a spanning collection of edges in G.

Algorithm 16.10 — Compute an MST for G. To get a tour, perform DFS on the
MST and use the triangle inequality to shortcut out any repeated nodes.

Analysis. DFS visits each edge twice, and shortcutting only reduces the cost, due to the
triangle inequality. So the cost of our solution is ≤ 2 ⋅ c(MST ) ≤ 2 ⋅ c(OPT), and it’s a
2-approximation.

Proof. We can do better than a 2-approximation. The Cristofides algorithm gets a
1.5 approximation, and more recently something like a 1.49999999 approximation was
discovered. Furthermore, there is a constant c > 1 such that metric TSP cannot be
approximated within c unless P = NP.

§16.1.2 (Metric) Steiner Tree

Problem 16.11. We are given n points with metric distances. k of them, forming a set
T , are terminals. The remaining n − k, forming X, are Steiner nodes. Now build a tree
spanning all of T – and optionally some/all of X – of minimum total cost.

An obvious algorithm is to do an MST on T . This turns out to give a 2-approximation.

Proof. Take OPT, do DFS (which at most doubles the cost), then shortcut repeated
nodes. Now, all nodes – and thus all Steiner nodes – have degree 2, and so the Steiner
nodes can be removed without increasing cost, owing to the triangle inequality. So this
gives us a spanning tree of T with cost ≤ 2 ⋅OPT. So the MST is a 2-approximation.

§17 Wednesday, October 19

§17.1 Approximation algorithms II

§17.1.1 Set Cover and Maximum Coverage

We’ll be discussing Set Cover and Maximum Coverage today. Each involves a
universe U of elements and collection of sets S1, . . . , Sm ⊆ U . For Set Cover, the sets
have associated costs cj , and the goal is to cover all of U at minimum total cost. In
Maximum Coverage, the elements of U themselves have values vi. The goal is to select
k sets that maximize the sum of all selected values in U (without double counting).

Let’s look at Set Cover first; we’ll actually begin by specifying the (greedy) approxi-
mation algorithm, and analyze it afterwards.

Algorithm 17.1 — Start with R = U , no sets selected. While R ≠ ∅, select Sj
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minimizing
cj

∣R∩Sj ∣ and set R = R ∖ Sj .

How can we show that this greedy algorithm doesn’t pay very much? If you simply
consider our solution compared to the optimal solution, the task of comparing the two
can seem pretty daunting. Let’s try to break this up a bit. One observation/intuition is
that if our algorithm pays a lot for some set, that set must contain expensive-to-cover
elements, so OPT should have to pay a lot to cover these elements as well.

In particular, we will assign a price pe to each element e ∈ U , then show that the cost
of any set cover can be lower-bounded in terms of the pe.

Analysis of Algorithm 17.1. Say that in iteration k we pick the set Sk. Then we define,

for all e ∈ Sk ∩R, pe = c(Sk)
∣R∩Sk ∣ . Then ∑j∈J cj = ∑e∈U pe. Now we make use of a lemma.

Lemma 17.2

For any set Sj — in particular, even those not in our chosen collection —
we have that

cj ⋅H(∣Sj ∣) ≥ ∑
e∈Sj

pe,

where H(k) = ∑ki=1 1
i .

Proof. Let Sj = {1, . . . , k}, such that our greedy algorithm covers elements
in the order 1,2, . . . , k (some at the same time). Now consider an arbitrary
element i. At the point when it is first covered by i, we know that elements
{i+1, . . . , k} haven’t been covered. Now let’s say our greedy algorithm picked
the set S` at this point, which minimized c`

∣R∩S`∣ . One option for S` was Sj

itself, which would have given a cost of at most
cj

k−i+1 . So

pi =
c`

∣R ∩ S`∣
≤

cj

∣k − i + 1∣
.

And thus,

∑
i∈Sj

pi ≤ cj
k

∑
i=1

1

k − i + 1
= cj ⋅H(k).

Now let C∗ be an optimal solution. Using the previous lemma, we have:

cost(C∗) = ∑
j∈C∗

cj

≥ ∑
j∈C∗

1

H(∣Sj ∣)
∑
e∈Sj

pe

≥ min
j∈C∗

1

H(∣Sj ∣)
⋅ ∑
j∈C∗

∑
e∈Sj

pe

≥ min
j∈C∗

1

H(∣Sj ∣)
∑
e∈U

pe.

So our algorithm is a maxj∈C∗H(∣Sj ∣)-approximation. In particular, that means it’s an
H(∣U ∣) ≈ ln(∣U ∣)-approximation.
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Remark 17.3. Unless P=NP, you cannot get a (1 − ε) ln(n) approximation in polynomial
time, for any ε > 0.

Now to Maximum Coverage – it’s straightforward to design a similar greedy algo-
rithm.

Algorithm 17.4 — For k iterations, pick the Sj giving the largest added value (i.e.,
value over elements that have not already been selected). That is,

• T0 = ∅,R0 = U

• in each iteration t = 1, . . . , k:

– let j(t) be the index of the set maximizing ∑i∈Sj∩Rt−1 vi
– set Tt = Tt−1 ∪ {j(t)} and Rt = Rt−1 ∖ Sj(t)

The intuition behind our analysis will be as follows: in each iteration in which the
value of Tt is far from the value of OPT, the algorithm makes “good progress.”

Analysis of Algorithm 17.4. Let OPT be the total value attained by the optimal solution
and Vt be the total value in our greedy algorithm’s chosen sets after t iterations. Then

V1 = V1 − V0 ≥
1

k
OPT,

since one of the sets in OPT must contribute at least a 1
k fraction of the value. More

generally, in iteration t: there exists a j ∈ C∗ such that the value of Tt ∪ {j} is higher
than that of Tt by at least OPT−Vt

k . (In particular, by adding all of C∗ to Tt, we would
get least OPT value.)

Thus at least one set in C∗, and thus in the world, adds a value of OPT−Vt
k . Since our

algorithm is greedy, we have

Vt+1 − Vt ≥
OPT − Vt

k
.

Rewriting gives us Vt+1 ≥ (1− 1
k) ⋅Vt+

1
k ⋅OPT. Recalling V0 = 0, we can prove by induction

that Vt ≥ (1 − (1 − 1
k)
t) ⋅ OPT. So this is better than a (1 − 1

e)-approximation, since

(1 − 1
k)
k → 1

e from below.

In fact, our work here can be generalized to a wider result.

Theorem 17.5 (Nemhauser-Wolsey-Fischer)

Let F ∶ 2U → R be a function such that

• f(S) ≥ 0 ∀S (non-negative),

• f(S) ≥ f(T ) for S ⊇ T (monotonicity),

• f(S ∪ {x}) − f(S) ≥ f(T ∪ {x}) − f(T ) whenever S ⊆ T (submodularity).

Then the greedy algorithm for maximizing f(S) subject to ∣S∣ ≤ k is a (1 − 1
e)-

approximation.
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Proof. The proof carries over almost identically. The only thing we need to show is that
if f is submodular, then for all T ⊊ T ′, there is a j ∈ T ′ ∖ T with

f(T ∪ {j}) − f(T ) ≥ 1

∣T ′ ∖ T ∣
(f(T ′) − f(T )).

This only takes a couple minutes to show, but we’re out of time for today, so we’ll pick
up here next time.

§18 Monday, October 24

§18.1 Approximation algorithms III

Here’s the key result for Nemhauser/Wolsey/Fischer that we mentioned last time. It’s a
very popular tool.

Lemma 18.1

Let f ∶ 2U → R be monotone submodular and S ⊊ T . Then there exists an e ∈ T ∖ S
with

f(S ∪ {e}) − f(S) ≥ 1

∣T ∖ S∣
(f(T ) − f(S)).

Proof. Straightforward contradiction. Or, more directly, let T ∖ S = {e1, . . . , ek} in some
order, and let Si = S ∪ {e1, . . . , ei}. Then

f(T ) − f(S) =
k

∑
i=1
f(Si) − f(Si−1)

≤
k

∑
i=1
f(S ∪ {ei}) − f(S).

So at least one term must be ≥ 1
k
(f(T ) − f(S)).

Here are some interesting related directions to think about:

1. What if we cannot evaluate f precisely, but only approximate it to precision ε?

– Here, and often in other settings, the loss in approximation can be bounded
in terms of ε. This kind of imprecision can be much worse if it occurs in your
constraint rather than your objective. E.g., if you overestimate the cost of a
set and so you don’t buy it, though it would’ve been really good.

2. We get a (1 − 1
e)-approximation for submodular maximization for the k-uniform

matroid (via our greedy algorithm). The same algorithm — which we would then
call Kruskal — gives an optimal solution for any matroid when f is linear.

3. How about monotone submodular functions on arbitrary matroids?

– By an older theorem of Nemhauser, greedy gets a 1/2-approximation on
arbitrary matroids for monotone submodular maximization.

– By a theorem of Vondrak, “continuous greedy” (which we won’t define here)
is a (1 − 1

e)-approximation for maximizing a monotone submodular function
subject to any matroid constraint.10

10This is a truly beautiful result about which you can learn more in CS 675.
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§18.1.1 Max-cut

Problem 18.2. Given an undirected graph G = (V,E), partition V = S ∪S to maximize
the number of cut edges.

There are many possible algorithms here. It turns that a silly one that works is to flip
a coin for each vertex v ∈ V and place it in S if it lands heads. So you don’t even look at
your edge set! Right now we’ll analyze a local search algorithm.

Algorithm 18.3 (Local search) — Start with an arbitrary S ⊆ V . While moving a
vertex from S to S or vice versa improves the solution, perform such a move.

This algorithm has at most ∣E∣ iterations, since the number of cut edges goes up by at
least one in each iteration.

Remark 18.4. What if each edge e has weight we and the goal is to maximize the total weight
cut? We now get a pseudo-polynomial guarantee on runtime, and this is pseudo-polynomial
even if we choose the biggest improvement each time.

To get our approximation guarantee, note that at termination, for each vertex v, at
least as many edges incident to v cross the cut as are inside S or S. So at least half its
incident edges cross the cut. And thus at least half of all edges cross the cut. So we have
a 2-approximation.

This analysis might not be tight, though. One key observation is that our upper bound
on OPT is tight, since there are indeed some graphs where you can cut all edges. And
our lower bound is also tight, since there are graphs — like Kn — where you can cut
at most 1

2 + o(1) many edges. So we’ll never characterize any algorithm as being better
than a 1/2-approximation unless we get finer with our analysis. And in fact there indeed
exists an ≈ 0.878-approximation using rounding on a semi-definite program.

§18.1.2 Load balancing

Problem 18.5. We are given n jobs with running times ti and access to m machines.
Divide the jobs over the machines to minimize their makespan, i.e., the latest finish time of
any job. Stated differently, partition {1, . . . , n} into S1, . . . , Sm to minimize maxj∑i∈Sj ti.

We’ve already seen that this is NP-hard even when m = 2! So, as expected, we’ll need
an approximation algorithm.

Algorithm 18.6 — Go through the jobs in an arbitrary order. In iteration i, add
job i to the set Sj minimizing ∑i∈Sj ti.

Let’s analyze this. Clearly OPT ≥ 1
m ∑i ti. This isn’t enough, though – it’s extremely

loose when we have one job and m machines. So we’ll also use that OPT ≥ maxi ti. Now
let S1 be the set of largest sum in our greedy algorithm. Before the last job i was added
to S1, it was the lowest loaded. So,

∑
i′∈S1∖{i}

ti′ ≤ ∑
i′∈Sj

ti′ , ∀j ≠ 1.

Then ∑i′∈S1∖{i} ti′ ≤
1
m ∑i′ ti′ ≤ OPT. And the last item we add to S1 is at most OPT, so

we have a 2-approximation.
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This analysis is tight: our algorithm can actually be off by a factor of 2 − o(1) from
OPT. An improvement to this algorithm is to process jobs from largest to smallest (rather
than in an arbitrary order) which gives rise to a 3/2 optimization. We need better bounds
on OPT to prove this, though — otherwise m + 1 jobs with ti = 1 ∀i gives a problem for
the analysis.

Remark 18.7. As we’ve mentioned repeatedly, good bounds on OPT are key to both
designing and analyzing approximation algorithms!

§19 Wednesday, October 26

§19.1 Approximation algorithms IV

Today we’ll be talking about LP relaxations of integer programs. The general idea of
LP-based approximation algorithms is as follows:

1. Write the optimization problem as an integer LP.

2. Remove the integrality constraint.

3. Solve the resulting LP.

4. Do some clever post-processing of the solution to get an integer solution.

The last step is known as the rounding of the LP, and it’s usually where the heart and
creativity of the algorithm really lie. Of course, even though we’re calling it rounding,
we’ll rarely simply be rounding each entry to its nearest integer – we’ll often have to be
more clever than that. The analysis of such an approximation algorithm usually takes
the following form for minimization problems.

1. Observe that OPTLP ≤ OPTIP .

2. Prove that the cost of our rounded solution is ≤ α ⋅OPTLP .

3. Conclude that we have an α-approximation!

§19.1.1 Weighted Vertex Cover

The setup is that of Vertex Cover, but vertices have costs cv and we want a vertex
cover of minimum total cost. So let’s cast this as an LP. Our variables are xv, which is 1
if v is selected and 0 otherwise. Our goal is to minimize ∑v cvxv subject to xu + xv ≥ 1
for all edges e = (u, v). In the true integer program (IP), we’d demand that xv ∈ {0,1},
but we’ll remove it for the sake of our LP relaxation.

With the integrality constraint removed, we can efficiently solve the fractional LP
and get a solution. Obviously, the natural intuition here is that larger values in our LP
solution should probably be cast to 1 and smaller values are more likely to be cast as 0.
So the most obvious algorithm is to simply round each xv to the nearest integer.

Algorithm 19.1 — Solve our LP relaxation of the integer program for Weighted
Vertex Cover, and round each variable xv to 1 if xv ≥ 1/2 and 0 otherwise.

Analysis. We should first show that this outputs a vertex cover. Note that our LP has
the constraint that xu + xv ≥ 1 and that xv ≥ 0. So for each edge, at least one vertex will
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be rounded to 1. Furthermore, the cost of our solution is at most twice that of the LP
optimum, since we buy at most twice as much of each vertex as the LP optimum does.
So we have a 2-approximation.

How could we prove that there’s no better way of rounding this particular LP? We
could come with a particular instance in which the solution to our LP is at least twice as
good as the solution to the ILP. This is known as measuring the integrality gap of our
LP with respect to the ILP.

Definition 19.2 — The integrality gap of an LP relaxation of an ILP is the worst-
case ratio of OPTILP

OPTLP
. If the analysis of an LP rounding algorithm only compares

the algorithm’s output to OPTLP — which is common — then it cannot achieve an
approximation guarantee better than the integrality gap.

Proposition 19.3

Our previous LP has an integrality gap ≥ 2, so we can’t round it better without a
more sophisticated analysis.

Proof. Look at Kn, the complete graph on n vertices, and give all vertices cost 1. Then
the best integral solution has cost n− 1. In particular, any choices of n− 1 vertices works,
and if you miss out on 2 vertices, then they have an edge between them that you miss.
But you can solve this in the fractional LP by buying 1/2 units of each vertex, which has
total cost n/2. So the integrality gap is at least

sup
n∈N

n − 1

n/2
= 2.

§19.2 Load balancing II

Let’s revisit load balancing under the additional restriction that certain jobs can only be
completed by certain machines. So we have a bipartite graph specifying which machines
can solve each job.

Let’s cast this as an ILP. We’ll have variables xij which are 1 if job i goes on machine
j and 0 otherwise. Now our constraints are that ∑j xij = 1 ∀i, xij ∈ {0,1}, xij ≥ 0. How
do we write our objective? There’s a wrinkle here, which is that maximums aren’t linear,
but there’s a way out. We add a new variable L to reflect the maximum load and add
constraints on it of the form L ≥ ∑i xij ⋅ ti ∀j. Now our objective is to minimize L.

Remark 19.4. This is a fairly common trick for incorporating maximums and minimums in
linear programs. This works well when you want to maximize a minimum, or vice versa, but
not so much if you’re maxing a max or minimizing a min.

There’s an issue with our LP relaxation, though. It has a huge integrality gap of m,
the number of machines, because one job could be split fractionally over m machines. So
let’s add the constraint to our fractional LP that L ≥ ti ∀i. This constraint is redundant
for the ILP, but it restricts the LP solution in a really useful way. This is a common
technique, known as strengthening an LP.

Now let’s get to the rounding part. Our fractional solution might have many positive
xij values. To clean it up, we can remove cycles. In particular, consider the bipartite
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graph of jobs and machines with an edge (i, j) when xij > 0. While this graph contains a
cycle, we can pick any such cycle and divide edges by alternating into sets S−, S+. Set
ε = mine∈S− xe. For all e ∈ S−, we decrease xe by ε and for all e ∈ S+ we increase xe by ε.

As we started with a cycle, this keeps all loads unchanged – so the solution doesn’t
get worse – and now at least one additional xij becomes 0. By repeating, we obtain a
solution in which there are no cycles. We now have that the graph is a forest.

As a second step, for each tree in the resulting forest, we process as follows:

1. Pick an arbitrary node, and root the tree there.

2. For each job that is a leaf, assign it to its unique parent.

3. For each job that is an internal node, assign it to one of its children.

Now consider the load on a given machine j. It’s equal to the load from the children
of j that are leaves and possibly the load of j’s parent. This first sum is at most L, since
the edge weights from j to its children i must be 1. In particular, those jobs i are not
split up among any machines, as they’re leaves. And the load from the parent of j adds
at most a cost of L to this load. So our algorithm is a 2-approximation.

Now that we’ve found an approximation algorithm using LP relaxation and rounding,
it actually turns out that we don’t need to solve the LP explicitly! We can instead binary
search for the correct L value. For each guess, we build a flow network with edges (s, i)
of capacity ti, edges (i, j) of capacity ∞, and (j, t) of capacity L. Then we see if we can
get a flow of ∑ ti in this network.

§20 Monday, October 31

§20.1 Online algorithms

We’ll be spending the next couple lectures on online algorithms, which are those that
receive input in a sequence of installments rather than all at once. Furthermore, after
the arrival of each chunk of data, decisions must be made irrevocably on the fly, without
knowledge of future input parts.

Example 20.1

You want to rent out your machine to maximize profit, but you don’t know future
job offers, and you must reject or accept the current ones in real time.

Some applications include traffic routing, emergency response, network design (you’d
like to keep your nodes connected, but don’t know where future nodes will arise), and
data structures (as you don’t know which items will be accessed in the future).

An immediate observation is that any online learning algorithm will in general make
suboptimal decisions compared to having hindsight. This is just the nature of the game.
As with approximation algorithms, we’d still like to quantify the quality of our imperfect
solution. This is where the competitive ratio comes in: it is the ratio of how much
worse our algorithm does compared to the optimum solution in hindsight.

Definition 20.2 — An algorithm A is called c-competitive if there exists an α such
that for all inputs I,

cost(A(I)) ≤ c ⋅ cost(OPT(I)) + α.
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And A is strictly c-competitive if this holds with α = 0.

Usually α should be independent of the number of time steps involved in I, but may be
allowed to vary with respect to the problem’s underlying size (e.g., number of machines
to rent, number of emergency robots to send out, etc.). More explicitly, problems often
have 2 natural parameters, as in # robots and # requests. Usually one stays bounded
while the other grows. Constants α, c should only depend on the bounded parameter if
at all.

Definition 20.3 — The competitive ratio of A is the smallest c such that A is
c-competitive.

§20.1.1 Ski rental

Here’s the problem: each day, you decide whether to rent or buy a pair of skis. Renting
costs R and buying costs B. After each day of skiing, you find out if you quit permanently
or go at least one more time.

Offline, this is trivial. Online, one observation is that there’s really only one kind of
strategy: rent for d many days and then buy. And as soon as we buy the skis, we know
that our adversary will have us quite skiing. So we’ll end up skiing for n ∶= d + 1 many
days.

Furthermore, the optimum cost for skiing over n days is min(B,n ⋅ R). And our
algorithm’s cost is B + (n − 1) ⋅R. So the competitive ratio here is

B + (n − 1)R
min(B,nR)

.

We’re restricting focus to n = d + 1, as this is the worst case for our algorithm. Now we
want to find n minimizing this. We have

R = max (B + (n − 1)R
B

,
B + (n − 1)R

nR
)

= 1 +max ((n − 1)R
B
,
B −R
nR

).

This is minimized when the terms in the max are equal, as one term increases with n
and the other decreases with n. And this occurs when n = B

R , so we have our strategy.
Rent until you would have paid the buying price with the next rental, then buy. And
this gives us a competitive ratio of

Rn + (n − 1)R
Rn

= 2 − 1

n
= 2 − R

B
.

Here, we’ve assumed an adversary who can observe all of the algorithm’s choices.
Traditionally, we assume an adversary who designs an input ahead of time. The additional
assumption we’re making here is not too strong for deterministic algorithms, but it would
be for randomized algorithms.

In fact, if your algorithm gets to flip random coins, it becomes important to distinguish
between adversaries that know about your coin flips ahead of time and adversaries that
don’t. With randomization — and adversaries that don’t know about coin flips ahead of
time — it turns out that one can do better at ski rental.
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§20.1.2 Self-organizing data structure

The idea behind self-organizing data structures is that some items/locations are more
expensive to access than others. The data structure can strategically adjust which items
are stored where, with the goal of keeping the total cost of queries cheap compared to the
optimum, for all access sequences. Intuitively, we’re usually willing to put less frequently
accessed data in the harder-to-reach places for the sake of keeping our favorite data close.

Example 20.4 (Linked list)

Consider the linked list data structure, which holds n items and such that accessing
the item in location j costs j. How should it rearrange its entries as it processes a
sequence of queries?

Analysis. Of course, if we knew all frequency counts ahead of time and we wanted a
static solution, we could sort the data by frequency. This would also be optimal in a
model where requests are generated independently at random from a known distribution.

Here are some natural heuristics:

1. Static: don’t rearrange the items after arranging them once.

2. Frequency count (FC): constantly keep the elements sorted by how often they have
been accessed over the full history of queries.

3. Move to front (MTF): after each query, move the most recently accessed element
to front of the list.

4. Transposition (TRANS): after each query, move the most recently accessed element
one position forward.

Historically, probabilistic analysis first suggested that the expected cost of TRANS is
less than that of MTF. This disagreed starkly with observations on real data, though,
leading to the development of competitive analysis.

Now let’s think about the bad inputs for each of these heuristics:

1. Static: the adversary keeps accessing the last element under whichever arrangement
we chose. Then each query costs n per access, and would have cost 1 per access in
an offline solution.

2. TRANS: the adversary keeps accessing the last element repeatedly. Then the last
two entries of the list will keep swapping positions. The total cost of these queries
is n per access, though it could have been alternating costs of 1 and 2 in an offline
solution.

3. FC: one possibility is to have queries that just cycle through all the elements, so
that the empirical distribution doesn’t help you. But then the optimal solution
also suffers high cost, so this doesn’t prove much about FC. We’ll pick up here next
time with a more clever adversary for frequency count.

Remark 20.5. The last point reveals a powerful technique for algorithm design in online
learning, and even more generally. A guiding principle in algorithm design is not just to
produce good outputs but also to cover your behind, so to speak. Namely, make sure that
any bad input for your algorithm needs to be so perverse that the optimal solution also
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suffers. So an adversary can’t hurt you too much without hurting itself.

§21 Wednesday, November 2

§21.1 Online algorithms II

§21.1.1 Self-organizing data structures II

Let’s keep analyzing the frequency count (FC) heuristic for the self-organizing linked list,
and work out a lower bound for its competitive ratio. The sequence of operations we’ll
consider is as follows: access the first element k many times, then the second element
k − 1 times, then the third element k − 2 times, and so on. Our FC protocol will never
rearrange the linked list when fed these queries, so the total cost is

n

∑
i=1

(k − i) ⋅ i ≥
n

∑
i=n/2

(k − n) ⋅ n/2

≥ n
2

4
⋅ (k − n).

The OPT, meanwhile, could move each element to the first place after the first access, so

cost(OPT) ≤ n ⋅ n + 1 ⋅
n

∑
i=1

(k − i)

≤ n2 + kn.

Then our competitive ratio is at least

n2

4 (k − n)
n2 + k ⋅ n

Ð→ n

4
.

Remark 21.1. The intuition here is that frequency count doesn’t respond to changes in the
query structure fast enough.

Theorem 21.2

Move-to-front (MTF) is 2-competitive. Namely, for all sequences σ, cost(MTF (σ)) ≤
2 ⋅ cost(OPT(σ)).

Proof. Ideally, we would like to prove that the inequality holds in each iteration. This
will not be true: OPT could after iteration 1 pay n − 1 to move the last element to first
place. Then, in iteration 2, OPT will pay 1 for its access while MTF will pay n.

To deal with this, we’ll amortize the costs of operations. The key observation is as
follows: if the state of the linked lists of MTF and OPT are “similar” after i−1 iterations,
then the access costs for iteration i should also be “similar”.

We’ll define a potential function φ(i) that measures how similar the linked lists of φ
and OPT are at step i. Then we’ll define a modified cost for MTF of the form:

cost′(MTF (i)) ∶= cost(MTF (i)) + φ(i) − φ(i − 1).

And the total modified cost is an upper bound on the sum of actual costs, as the
φ(i) telescope, leaving one with φ(`) − φ(0) = φ(`) ≥ 0. Now we’ll show that for all i,
cost′(MTF (i)) ≤ 2 ⋅ cost(OPT(i)), at which point we’re done.

So what should φ be? There are two natural choices:
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1. Spearman’s footrule: ∑j ∣pOPT(j) − pMTF (j)∣, where p(j) represents the position
of element j.

2. Kendall’s τ : number of pairs (j, j′) with pMTF (j) < pOPT(j′) and pOPT(j) >
pMTF (j′). (I.e., number of inversions.)

It turns out that (1) won’t work, but (2) will work. The analysis isn’t terribly complicated,
but I opted to try to follow it carefully rather than write it down.

Remark 21.3. This analysis relies crucially on the fact that all transpositions have cost 1
in this model (and these are the only swaps allowed, other than move-to-front). That’s not
too realistic for linked lists, but it’s needed to make this analysis go through.

§21.2 Randomized algorithms

Definition 21.4 — A randomized algorithm is one that is allowed to use random
bits when making decisions. The are essentially two kinds:

• Monte Carlo algorithms, whose output can vary with respect to the random
bits, and

• Las Vegas algorithms, whose runtime and even termination can vary with
respect to the random bits.

A large unsolved question is whether RP = P, i.e., whether there are any problems that
can only be solved in polynomial time by randomized algorithms.

Example 21.5 (Max-3-SAT)

Given a 3-SAT formula with n variables and m clauses, find an assignment maximizing
the number of satisfied clauses.

Solution. We’ll use Johnson’s algorithm, which is defined as simply choosing a uni-
formly random variable assignment (without even looking at the clauses!). This begets
a random variable Z for the number of satisfied clauses. To compute EZ — and get a
handle on the performance of this algorithm — we write Z = ∑j Zj , where Zj records
whether clause j is satisfied or not. We have probability at least 7/8 of satisfying each
clause, so EZ ≥ 7

8 ⋅m and we have a 7/8-approximation. This also implies that one can
always satisfy at least a 7/8 fraction of a 3-SAT’s clauses using some variable assignment,
which is not obvious a priori.

§22 Monday, November 7

§22.1 Randomized algorithms II

Last time we learned about Johnson’s algorithm as a randomized approximation to
Max-3-SAT. It attains a respectable approximation factor of 7/8, but it also seemed
pretty silly — it doesn’t even require that we look at the clauses! Obviously, we can get
a better approximation by putting in some more thought. Or can we...
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Theorem 22.1 (Hastad)

Unless P = NP, there is no poly-time 7/8+ε approximation algorithm for Max-3-SAT
for any constant ε > 0.

We starting class by walking through the familiar coupon collector problem. One
remarkable fact is that if you only need to see 90% of the coupons, then your average
waiting time goes down from n ln(n) to n ln(10). Real world takeaways:

• If you’ve already collected 17 of the 20 coupons you need, you’re actually not close
to being finished at all! It’s the last couple where the waiting time really kicks in.

• If you can design some process (e.g., in machine learning or communication) so
that you only need to see 95% of the data to succeed, rather than 100%, you’ve
improved things tremendously!

§22.2 Median finding

Problem 22.2 (Median finding). Given an array of integers, find its median.

There are three ways to tackle this.

1. Sort the array and index into its median. This is in Θ(n logn), which is a bit
overkill.

2. There’s a deterministic Θ(n) solution, known as the median of medians.

• It’s quite beautiful, but beyond the scope of our current discussion.

3. Randomized: pick a uniformly random element of the array as a pivot. Divide
elements (in Θ(n)) into those smaller than the pivot and those larger. Search in
the correct subset.

With the third strategy, we end up with an expected runtime of T (n) ≤ Θ(n) +
T (max(n−, n+)), where n−, n+ are the sizes of the sets of elements smaller than our pivot
and larger than our pivot, respectively. If we were magically guaranteed that n/4 ≤ n−
and n+ ≤ 3n/4, then we would have an expected runtime of

T (n) ≤ Θ(n) + T (3n/4) ≤ 4Θ(n) = Θ(n).

So we would be in business if this were true. How strong is this assumption? Well, our
pivot element p has probability 1/2 of being in the middle 50% of elements in the array,
so our previous condition has probability 1/2 of holding.

Now let Xi be the number of rounds from when our set had size ≤ (34)
i−1 ⋅ n for the

first time until it had size (34)
i ⋅ n for the first time. Then our total runtime is bounded

by ∑∞
i=1Xi ⋅ (34)

i−1 ⋅ n. In expectation, this is then bounded by

n
∞
∑
i=1

(3

4
)
i−1

EXi ≤ 2n ⋅
∞
∑
i=1

(3

4
)
i
= 8n = Θ(n).

46



CS 670: Advanced Analysis of Algorithms Fall 2022

§22.2.1 Quicksort

The randomized sorting algorithm quicksort is defined as follows: pick a pivot p
uniformly at random and proceed essentially as in our median finding algorithm. To
analyze the number of comparisons demanded by quicksort, let the random variable Xi,j

be 1 if elements i and j are ever compared by the algorithm and 0 otherwise. The key
observations are as follows:

1. If elements i, j are split into separate groups before one becomes a pivot, then they
will never be compared.

2. If i or j is selected as a pivot before they are split into separate groups, then they
will be compared.

When a pivot point is drawn that is less than i or greater than j — let’s assume i < j
— then nothing happens. So we can fast forward to the first time a pivot p is drawn form
the set {i, i + 1, . . . , j}. At that point, the probability of comparing them is exactly 2

j+1−i ,

corresponding to the event p ∈ {i, j}. So we have

E(# of comparisons) = E (∑
i,j

Xij)

=∑
i,j

EXij

=
n−1
∑
i=1

n

∑
j=i+1

2

j + 1 − i

=
n−1
∑
i=1

n−i
∑
k=1

2

k + 1

≤ 2 ⋅
n

∑
i=1

n

∑
k=1

1

k

≈ 2n ln(n).

Remark 22.3. Fastforwarding until a pivot was selected in the interval {i, . . . , j} was a key
move in the previous result. It’s a neat idea.

§22.3 Concentration bounds

Thus far, we’ve focused on the expectations of the random variables we’ve encountered.
It can also be crucial to have bounds on the probability that a random variable stays
close to its expectation (or, relatedly, does not get too large/small). These are known as
concentration bounds, and one of the most famous is Markov’s inequality. It is very
broadly applicable, but sometimes too weak to be of much use.

Theorem 22.4 (Markov’s inequality)

If X is a non-negative random variable with a first moment, then P(X > a) ≤ EX
a .

Remark 22.5. One situation in which Markov’s inequality is useful is that in which you
have a sequence of random variables Xi with E(Xi)→ 0 very quickly.
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When working with a sum of several independent random variables rather than a single
one, the stronger Chernoff bounds can be useful.

Theorem 22.6 (Chernoff bounds)

Let X1, . . . ,Xn be independent 0-1 random variables, X = ∑ni=1Xi, and δ > 0. Then,

1. P(X > (1 + δ)µ) < ( eδ

(1+δ)1+δ )
µ
, for any µ ≥ EX,

2. P(X < (1 − δ)µ) < e−
1
2
µδ2 , for any µ ≤ EX.

§23 Wednesday, November 9

§23.1 Concentration bounds II

Let’s continue our discussion of concentration bounds with the Hoeffding bound.

Theorem 23.1 (Hoeffding)

Let X1, . . . ,Xn be independent random variables with Xi ∈ [ai, bi] and X = ∑iXi.
Then,

P(∣X −EX ∣ ≥ t) ≤ 2e
− 2t2

∑i(bi−ai)2 .

Example 23.2 (Load Balancing)

We have m identical jobs and n machines. The goal is to distribute jobs across
machines without coordination. That is, we don’t want the hassle of making machines
speak with each other. One approach is to have each job assigned independently and
uniformly at random to a machine. What is the maximum load on any machine?

Solution. To get a bound on the probability that the load for a given machine grows too
large, we can use the Chernoff bound. Let’s pick δ so that our probability guarantee is
< 1
n2 . In particular, this will allow us to take a union bound over our n machines while

still keeping the probability fairly small.
As the average for our given machine’s load X is m/n, the Chernoff bound gives us for

any δ > 0,

P(X > (1 + δ) ⋅ m
n
) < ( eδ

(1 + δ)1+δ
)
m
n

.

So let’s engineer this to get a probability guarantee of 1
n2 . Unfortunately, our left hand

side has copies of δ in the numerator and denominator, and these kinds of expressions
usually can’t be solved in closed form.

( eδ

(1 + δ)1+δ
)
m
n

< 1

n2

This is a bit of a hassle to solve, but a key point is that there are two regimes here:

1. m = n (or m ≈ n): Then we need

eδ

(1 + δ)1+δ
< 1

n2
.
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And it turns out that δ = Θ( logn
log logn) is sufficient. This is also pretty tight; you’ll

see loads about this big — i.e., (1 + δ) ⋅ mn — in practice.

2. m >> n: let’s assume m ≥ 16 ⋅ n logn. Then,

( eδ

(1 + δ)1+δ
)
m
n

≤ ( eδ

(1 + δ)1+δ
)
16 logn

as the term being exponentiated is ≤ 1. Setting δ = 1, the right hand side comes
out to:

(e
4
)
16 logn

≤ ( 1

e2
)
logn

= 1

n2
.

So in this regime, δ = 1 is sufficient.

By the union bound over all machines, with probability at least 1 − 1
n , all loads are

bounded by (1 + δ) ⋅ mn .

Remark 23.3. For all x ≥ 0, it’s true that

(1 + x) ≤ ex ≤ (1 + x)1+x.

§23.1.1 Route selection

Problem 23.4. We are given an undirected graph G, with pairs of vertices (si, ti). The
goal is to pick a path Pi ∶ si → ti for each i, minimizing the maximum edge congestion
(i.e., maximum number of paths selecting any one edge).

If we ask for congestion 1, this is edge-disjoint paths, which is NP-hard for directed
graphs even for 2 pairs, and for undirected graphs when the number of pairs is part of
the input. So we’ll need an approximation algorithm.

[We spent the rest of the lecture devising and analyzing an approximation algorithm.
It was pretty involved, and I opted to pay full attention rather than transcribe.]

§24 Monday, November 14

§24.1 Packet routing in networks

Problem 24.1 (Packet routing). We are given a graph G with N paths P1, . . . , PN . For
each path, there is a packet that needs to traverse that path. For each edge e in G, only
one packet can cross e per time step (others can wait in queue). Now the goal is to finish
routing packets in as few rounds as possible.

Before even thinking about an algorithm here, let’s derive some lower bounds.

• dilation d ∶= maxi ∣Pi∣

• congestion c = maxe ∣{i ∶ e ∈ Pi}∣

And an easy upper bound on the optimum here is c ⋅ d: each step on each path has to
wait at most c time steps to cross each edge. (So long as we don’t leave edges unused
when there’s demand for them.)
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Remark 24.2. It’s actually possible to show that O(c + d) is possible, though we won’t
discuss that here.

We’ll take a randomized approach. It’s one of those tactics that can be difficult to
motivate if you haven’t seen it, but feels fairly natural once you’ve used it a few times.

Algorithm 24.3 — Each packet independently draws a uniformly random start
time si ∈ {1, . . . , r}, for some r to be determined. Then, it tries to follow one edge in
each “time step.”

Proof sketch. We’ll choose r so that in each time step t, at most a small number b of
packets want to cross any one edge e. Then, by replacing each time step with a “meta
time step” of b real time steps, we slow down the process by a factor b and ensure that all
packets can progress through their edges in one meta time step. The total time required
will then be O((r + d) ⋅ b).

Proof. We reverse engineer r, b to make this work. Consider an edge e in time step t.
Set Xe,t to be the number of paths crossing e at step t. We’ll be assuming for now that
packets can cross edges at the same time. So E(Xe,t) ≤ c

r . In particular, each of the ≤ c
paths hitting e have probability 1

r of having started at exactly the right time so that
they’re crossing edge e at time t.

So we need r, b such that P(Xe,t > b) < ε for ε ≤ 1
m×m⋅(r+d) . Then we can apply a union

bound over our m ⋅ (r + d) pairs of (edge, time step). And because packet starting times
are independent, the Xe,t,i are independent for fixed e, t and varying packets i ∈ [N].
Thus we can apply the Chernoff bound.

We use µ = c/r ≥ E(Xe,t) and somewhat arbitrarily choose δ = 1. Then we have

P(Xe,t ≥ 2 ⋅ c
r
) < (e

4
)
c/r
.

So we solve ( e4)
c/r

< 1
m2(r+d) . This gives us

(e
4
)
c/r

< 1

m2(r + d)
c/r > log4/em

2(r + d)

r < c

log4/em
2(r + d)

.

And because r ≤ c ≤ N , and d ≤m, we get that

r < c

log(m2(N +M))

is sufficient. This puts r in Θ( c
log(mN)). So we pick r like so, our union bound works,

and we get b = 2 cr = Θ(logmN). Then the total number of real time steps is

b ⋅ (d + r) = Θ(log(mN)) ⋅ (d + c

Θ(logMN)
)

= Θ(c + d log(mN)),

and this holds with probability ≥ 1 − 1
m .
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§24.2 Game theory

Definition 24.4 — Game theory is an analysis framework for situations in which
n ≥ 2 players each take actions, and the actions taken by all players jointly determine
an outcome, which in turn determines each player’s utility.

The simplest case here is two-player games, n = 2. In this case, if each player chooses
just one action, we can encode outcomes using matrices. Namely, let A = (Ar,c) equal
the reward to the row player if she takes action r and the column player takes action
c. Likewise for B = (Br,c) and the utility to the column player. In zero-sum games,
B = −A, i.e., one player’s gain is the other’s loss.

Remark 24.5. A zero-sum two-player game can be thought of as follows. Players A and B
each take actions, and at the conclusion of the turn one player pays the other k many dollars.

Lemma 24.6

Going first in a zero-sum game is never better than going second.

Proof. Say we’re the row player. If we go first against an optimal adversary, we’ll receive
utility maxr mincAr,c. If we go second, we get mincmaxrAr,c. We have:

max
r

min
c
Ar,c = min

c
Ar̂,c ≤ Ar̂,ĉ ≤ max

r
Ar,ĉ = min

c
max
r
Ar,c.

§25 Wednesday, November 16

§25.1 Game theory II

Definition 25.1 — A pure Nash equilibrium in a game is an assignment of
actions to players such that no player benefits from changing their strategy in
isolation.

Remark 25.2. We’re using strategy here to simply mean action. Later on, we’ll slightly
generalize this.

A pure Nash equilibrium is a reasonable and stable outcome in that — supposing the
players ever reach it — no one will ever want to deviate unilaterally. Notably, we’re not
considering chain effects or cooperation here (e.g., player A subsequently changing their
strategy in response to the change from player B, or players A and B coordinating ahead
of time to both change their actions simultaneously).

Definition 25.3 — A dominant strategy is one that is optimal regardless of what
other players are doing. (It frequently does not exist.)

In the tragedy of the commons, the key issue that selfishness is a dominant strategy.
Regardless of how much the other people in your community are fishing in the lake,
you’re better off fishing more than your fair share. Likewise, ratting out your friend is
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the dominant strategy in the prisoner’s dilemma. So these are settings where dominant
strategies exist and are a really bad thing — they hurt everyone. Note also that pure
Nash equilibria may not exist; consider the (zero-sum!) game of Rock, Paper, Scissors
(RPS).

In RPS, you can get away from this using randomization. For instance, if you’re going
first in RPS, the best you can do is to say that you’ll play each move with probability
1/3.

Definition 25.4 — A mixed Nash equilibrium is an assignment of distributions
over actions such that no player wants to deviate from their strategy in isolation.

Theorem 25.5 (Nash)

Any finite bimatrix gamea has a mixed equilibrium.

ai.e., two-player simultaneous game with a fixed number of actions.

Proof. Non-constructive, using a fixed-point argument. More recent proofs have shown
that learning algorithms for these games will converge to a mixed equilibrium.

Actually finding mixed Nash equilibria (NE) is computationally intractable, though.

Theorem 25.6 (DGP)

Finding a mixed NE for n ≥ 3 players is PPAD-complete.

Remark 25.7. If you’re doing research and you find that the notion of mixed Nash equilib-
rium comes up — or even just of mixed strategies — always make sure to check that it even
makes sense to discuss mixed strategies in this setting. For instance, it often doesn’t make
much sense to discuss a mixed strategy if you only play the game once.

Hereafter we’ll be restricting focus to zero-sum games. For two players, one neat
observation is that even if the first player’s strategy is mixed, the second player’s optimal
strategy can be assumed to be deterministic, by linearity of expectation.

So let the payoff matrix be Ar,c from the perspective of the row player, and suppose
that the row player goes first, with mixed strategy {pr}r∈R, ∑r pr = 1. Then the column
player will play some deterministic action c, giving the row player a payoff of ∑r prAr,c.
In particular, the column player will select the action c to minimize this sum, as we’re
in a zero-sum game. So the goal of the row player is to select pr so as to maximize
minc prAr,c.

This can be phrased as a linear program, as follows:

maximize W

such that W ≤∑
r

pr ⋅Ar,c ∀c

∑
r

pr = 1

pr ≥ 0 ∀r

Any time we have a linear program, we should take its dual and see what it tells us. In
this case — with a bit of manual labor — we can see that the dual captures the column
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player’s optimization problem for finding an optimal first-mover strategy (i.e., if the
column player were to move first). From weak duality, we then have the following result.

Theorem 25.8 (Loomis’s Theorem)

For all distributions P,Q,

min
c

E
r∼P

Ar,c ≤ max
r

E
c∼Q

Ar,c.

And from strong duality, we have that if P and Q are optimal strategies for the row
and column players, then

min
c

E
r∼P

Ar,c = max
r

E
c∼Q

Ar,c.

So if both players play optimally, then the order doesn’t matter, and (P,Q) is a mixed
equilibrium. This is known as von Neumann’s minimax theorem.

Game theory is a beautiful field currently receiving lots of attention in computer science.
An important observation is that algorithm design itself can be viewed as a 2-player
game between an algorithm designer and an adversarial input designer. In particular, let
A be the set of all deterministic algorithms (say for fixed input size n), and let I be the
set of all inputs of size n. And let the utility to our adversary for (A, I) be the runtime
of algorithm A on input I (or memory usage, approximation guarantee, etc.). Then this
game precisely captures algorithm design.

We will now consider randomized algorithms A that always terminate within fA(n)
many steps. These can be viewed as a distribution over at most 2fA(n) deterministic
algorithms. (We can flip fA(n) many coins before the algorithm starts running; whenever
it needs another coin, it reads the next pre-flipped coin.) Let P be the resulting
distribution over deterministic algorithms. Then the worst-case expected performance of
P is maxI∈I EA∼P cost(A, I).

And by Loomis’s theorem, we have, for any P and Q,

max
I∈I

E
A∼P

cost(A, I) ≥ min
A

E
I∼Q

cost(A, I).

This is known as Yao’s minimax principle.

53



CS 670: Advanced Analysis of Algorithms Fall 2022

Theorem 25.9 (Yao’s minimax principle)

Fix an input size n, let A be the set of all correct deterministic algorithms for a
given problem with size n, and I the set of all inputs of size n. Let cost(A, I) be
any cost measure for algorithm A ∈ A running on input I ∈ I (runtime, memory,
approximation factor, etc.).

Now let P be any distribution over algorithms with finite support, and Q any
distribution over inputs. Then

min
A∈A

E
I∼Q

cost(A, I) ≤ max
I∈I

E
A∼P

cost(A, I).

So the running time of the best deterministic algorithm for any input distribution Q
is a lower bound for the running time of any randomized algorithma for its worst-case
input. (Equality follows from von Neumann’s theorem if P is the best randomized
algorithm and Q is the worst input distribution.)

aStrictly speaking, randomized algorithm that uses a bounded number of coin flips on inputs of
size n.

§26 Monday, November 21

§26.1 AND/OR Tree evaluation

Problem 26.1. We have a tree whose leaves are labeled as True or False, and whose
remaining nodes are labeled by AND or OR. An AND node evaluates to True if all its
subtrees evaluate to True, and an OR node evaluates to True if any one of its subtrees
evaluate to True. The layers of the tree alternate between consisting of all AND nodes
and all OR nodes. The goal is to evaluate the root of the tree while querying as few
leaves as possible.

Lemma 26.2

Any deterministic algorithm can be forced to evaluate all the leaves.

Proof sketch. Show by induction that for any height h and any type of root, a deterministic
algorithm can be forced to evaluate all leaves and the outcome can be True or False. This
completes the proof. Furthermore, as with other online settings, because the algorithm is
deterministic, the adversary can specify the whole input ahead of time.

Now let’s see if randomness can help us. We’ll assume that our trees are binary for
the sake of simplicity, though it doesn’t affect the analysis very much. Let’s now design
a randomized algorithm in which we process nodes from the top down. For instance, to
learn the value of a tree with an AND root:

• If both children are 1(=True), then both have to be evaluated.

• If both children are 0(=False), then only one has to be evaluated.

• If one is 0 and the other is 1, then with the wrong order of evaluation (i.e., evaluating
1 first), both children will have to be evaluated. Otherwise, only one will be. We’ll
randomize that order of evaluation to get it right with probability 1/2.
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Similarly, for an OR node, if it evaluates to 1, then with probability at least 1/2, one
only has to evaluate a single subtree.

Algorithm 26.3 (Snir’s algorithm) — To evaluate a node, evaluate a uniformly
random child, then evaluate the other child if necessary.

You can think of this as a randomized depth-first search. – David

Analysis of Algorithm 26.3. To analyze this, let X
0/1
k be the random variable that gives

the cost of evaluating a node at level k when the outcome is 0/1. Now let k be even, so
that we have an AND node. Then to evaluate it to 1, we needed to have looked at both
of its children, so

X1
k ≤ 2X1

k−1 Ô⇒ E(X1
k) ≤ 2E(X1

k−1).

To evaluate it to 0, at least one of its children must evaluate to 0, so

X0
k ≤X

0
k−1 + [wrong choice] ⋅X1

k−1 Ô⇒ E(X0
k) ≤ E(X0

k−1) +
1

2
E(X1

k−1).

Symmetrically, for k odd, giving us an OR node, we have

E(X0
k) ≤ 2E(X0

k−1), E(X1
k) ≤ E(X1

k−1) +
1

2
E(X0

k−1).

Now write Yk = max (E(X0
k),E(X1

k)). For k even, we have

E(X1
k) ≤ 2E(X1

k−1) ≤ 2E(X1
k−2) +E(X0

k−2) ≤ 3Yk−2.

And likewise,

E(X0
k) ≤ E(X0

k−1) +
1

2
E(X1

k−1) ≤ 2E(X0
k−2) +

1

2
E(X1

k−2) +
1

4
E(X0

k−2) ≤ 3Yk−2.

Similarly for an OR node (i.e., k odd), we can show that Yk ≤ 3Yk−2. So a tree with k
AND nodes and k OR nodes — that is, height 2k — has Y2k ≤ 3k. And such a tree has
n = 22k = 4k leaves. So k = log4 n, and the expected number of evaluations is at most

3log4(n) = nlog4(3) ≈ n0.793.

This also implies the existence of a certificate of size ≤ n0.793 for every possible truth
setting, which is not so obvious.

We’d now like to derive a lower bound for this problem. That seems pretty challenging
to do directly, especially as we’re analyzing randomized algorithms, and we don’t know
their coin flips ahead of time. To derive a lower bound, we’ll appeal to Yao’s minimax
principle. We’ll need to describe a malicious input distribution, then analyze the best
deterministic algorithm against that distribution. Of course, every distribution will give
some lower bound, but not-so-clever choices — e.g., distributions with small support —
will give weak lower bounds.

A natural starting point is to set each leaf to True independently with probability p.
Taking p = 1

2 seems reasonable enough, but it has the disadvantage that two levels up, the
probability of a subtree being true is 9/16 ≠ 1/2. That seems somewhat unfortunate for
our analysis, so we’ll instead choose p such that two levels up in our tree, the probability
of a node evaluating to True remains constant. Chasing a bit of algebra, this comes out

to demanding that p = (1 − p)2, leaving us with p = 3−
√
5

2 . One can show — though it
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takes work — that the optimal deterministic algorithm for this input distribution is to
query leaves 1, . . . , n in order, skipping leaves whose values are not needed. (And this is
equivalent to a deterministic analogue of our previous DFS.)

So what’s the expected cost of this algorithm? Let T (k) be the number of queries it
makes to evaluate a tree of height k against our input distribution. We have

E(T (k)) ≥ E(T (k)) + (1 − p)E(T (k − 1)).

In particular, we always evaluate one tree, and we evaluate the second if and only if the
first one was false.11 So,

E(T (k)) ≥ (2 − p)E(T (k − 1))
≥ (2 − p)k

= (
√

5 + 1

2
)
log2(n)

= nlog2(
√
5+1)−1

≈ n0.694.

That’s a pretty good lower bound, but it doesn’t quite match our upper bound. We know
that Yao’s minimax principle is tight for optimal randomized algorithms & randomized
inputs, so one of our bounds must be loose.

It’s probably the lower bound that is loose. One reason why we should suspect this
is that our input distribution technically allows for silly things like leaves that are all
True or all False. More generally, due to independence, our distribution can generate
inputs on which the algorithm cannot go wrong (e.g., generating a tree with an AND
node whose children both evaluate to False, or an OR node whose children both evaluate
to True). Instead, one should anti-correlate the values of subtrees, and generate the input
distribution itself using a random DFS assignment.

This makes it more complex to analyze the best deterministic algorithm, but you can
in fact show that it gives an nlog4(3) lower bound. So that one’s tight!

Remark 26.4. If you find this kind of thing interesting, here are some open directions:

1. What’s the best deterministic algorithm when the leaves `i of the tree are True
independently with known probabilities pi?

2. What’s the best randomized algorithm when there are non-uniform query costs?

§27 Monday, November 28

§27.1 Multiplicative weights

Here’s the basic setup of multiplicative weights: we want to make a sequence of
decisions (for now, binary), and we’re equipped with the recommendations of n “experts.”
The setting is online, so after the algorithm makes its irrevocable decision at each time
step, the rewards & penalties of all actions are revealed. Notably, this is hopeless in the
“approximation” or “competitive analysis” sense; you can easily be wrong every time.

As a result, we need a more meaningful notion of performance. Rather than competing
with an offline solution, our goal will be to do not too much worse than the single best

11At one point in the analysis, we turned all the nodes into NOR nodes. I didn’t write down the details.
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expert (judged in hindsight). These experts can be good, bad, or mixed, and the basic
idea of our algorithm will be to follow the experts who have done well so far. That way,
in order to make the algorithm look bad, an adversary also has to make all experts look
bad. Now for the algorithm.

Algorithm 27.1 (Weighted Majority) —

• fixed parameter η

• initialize all weights w1
i = 1

• in each round t:

– choose an action based on the weighted majority of experts

– for every expert who predicted wrong, set wt+1i = (1 − η)wti

Theorem 27.2

Let M (T ) be the number of mistakes committed by Weighted Majority up to time

T , and m
(T )
i the number of mistakes committed by expert i up to time T . Then,

M (T ) ≤ 2

1 − η
m

(T )
i + 2

η
ln(n)

for all experts i.

Proof. Let’s define Φt = ∑iw
(t)
i . Assume that in round t, our algorithm made a mistake.

Then the set St of experts making a wrong recommendation had at least half the total
weight. This is now multiplied by (1 − η). So,

Φt+1 ≤
1

2
Φt +

1

2
Φt(1 − η) = Φt(1 −

η

2
).

And thus,

ΦT ≤ (1 − η
2
)M(T ) ⋅Φ1 = n ⋅ (1 −

η

2
)M(T ).

Now fix an expert i. We have that w
(T )
i = (1 − η)mi(T ). And obviously w

(T )
i ≤ ΦT , so

(1 − η)mi(T ) ≤ n ⋅ (1 − η
2
)M(T ).

And that’s really the heart of the analysis! The rest of the work will just be in teasing
this out and organizing it more nicely. In particular, we have

(1 − η)mi(T ) ≤ n ⋅ (1 − η
2
)M(T )

( 2

2 − η
)
M(t)

≤ n ⋅ ( 1

1 − η
)
mi(t)

M (T ) ⋅ ln 2

2 − η
≤ ln(n) +m(T )

i ⋅ ln 1

1 − η
.

Chasing this further, and using the fact that ln(1 + x) = x − x2

2 + x3

3 − . . . ∈ [x − x2

2 , x], we

arrive at our equation.
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Remark 27.3. Two analysis facts we made use of in the previous proof:

• truncating the Taylor series for ln(1+x) after a negative (resp. positive) term yields a
lower (resp. upper) bound on the function,

• ln(1 + x) ≤ x.

It’s worth making a distinction between this kind of setting, known as expert learning,
and the setup of bandit learning. Namely, in expert learning, you observe the rewards
of all experts at each time step, whereas in bandit learning you observe only the reward
of your chosen expert (i.e., the expert you followed in that time step).

Now let’s generalize the setting so that actions are no longer binary. We’ll now allow
for the experts to take distinct actions. In fact, we’ll abstract away the actions: in each

round, each expert will simply incur a cost m
(t)
i ∈ [−1,1]. (We’ll think of negative costs

as rewards.) Our algorithm will thus choose an expert to follow at each round and receive
their same reward.

Note that a deterministic algorithm doesn’t stand a chance anymore; in each round,
the chosen expert can be the only bad one. So we’ll need to randomize.

Algorithm 27.4 (Multiplicative Weights) —

• fixed parameter η (learning rate)

• initialize weights w
(t)
i = 1

• in each round t:

– let Φ(t) = ∑iw
(t)
i

– choose expert i with probability P
(t)
i = w(t)

i /Φ(t).

– for each i, update w
(t+1)
i = w(t)

i ⋅ (1 − η ⋅m(t)
i )

Theorem 27.5

If all m
(t)
i ∈ [−1,1], then Multiplicative Weights’ expected cost is at most

∑
t

m(t) ⋅ p(t) ≤∑
t

m
(t)
i + η

1 − η∑t
∣m(t)

i ∣ + ln(n)
η

for all experts i.

Proof. Let’s again study the evolution of Φ(t) and w
(t)
i , and use that w

(t)
i ≤ Φ(t). We

have:

Φ(t+1) =∑
i

w
(t+1)
i

=∑
i

w
(t)
i (1 − η ⋅m(t)

i )

= Φ(t) − η ⋅∑
i

wi(t)
Φ(t) ⋅Φ(t) ⋅m(t)

i

= Φ(t)(1 − η ⋅ p(t) ⋅m(t))

≤ Φ(t)e−ηp
(t)m(t) .
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And this can again be chased to arrive at the inequality in question, using things like log
inequalities. I didn’t write down the details.

§28 Wednesday, November 30

§28.1 Multiplicative weights II

Let’s look at some nice corollaries from our analysis of Multiplicative Weights in Theo-
rem 27.5.

Corollary 28.1

For any fixed distribution q⃗ over experts, the algorithm has expected cost at most

ln(n)
η

+∑
t

(m(t) + η

1 − η
∣mt∣) ⋅ q⃗.

Here ∣m(t)∣ means taking coordinate-wise absolute values of the vector m(t).

Proof. Just a convex combination of Theorem 27.5. I.e., multiply the previous theorem
by qi for each expert i, then add the inequalities all up.

So this allows us to compete with a fixed distribution over experts rather than just a
single expert. An optimal opponent would never really want to do that — they would
put all their eggs with the best expert — but there are some natural settings in which
an adversary plays with distributions over experts. We’ll see some shortly.

Corollary 28.2

If we’re speaking in terms of rewards rather than costs, the Multiplicative Weights
algorithm guarantees an expected reward of at least

∑
t

(m(t) − η

1 − η
∣m(t)∣) ⋅ q⃗ − ln(n)

η
.

Some applications of Multiplicative Weights include:

• Linear/convex/semi-definite programming: experts are variables, and rewards are
determined by constraints.

• Machine learning (e.g., classifiers): experts are features, and rewards are determined
by correct/incorrect classification.

• Learning mixed strategies in games: experts are pure strategies, and rewards are
determined by opponent actions.

• Greedy Set Cover approximation can be analyzed as a special case with η = 1.

Let’s dig deeper into an example of Multiplicative Weights for machine learning.

Example 28.3

Say we have m data points (a⃗i)i∈[m] in Rn, each equipped with a binary label

`i ∈ {±1}. We assume the points are linearly separable via a hyperplane x⃗ going
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through the origin with xi ≥ 0 ∀i.
Now, the assumption that such a hyperplane exists is equivalent to saying that there

is a vector x⃗ such that `j = sign(a⃗j ⋅ x⃗) for all j. Because sign(−a⃗j ⋅ x⃗) = − sign(a⃗j ⋅ x⃗),
we can assume without loss of generality that all `j = 1. (More explicitly, we replace
any (a⃗j , 0) pair with (−a⃗j , 1).) Furthermore, because sign(a⃗ ⋅ x⃗) = sign(ca⃗ ⋅ x⃗) for all
c ≥ 0, we can divide all a⃗j by maxi ∣aj,i∣ if needed and assume that all aj,i ∈ [−1,1].
We can normalize xi in the same way, so that ∑i xi = 1.

In summary, we have a⃗j with aj,i ∈ [−1,1], and we want to find x⃗ with a⃗j ⋅ x⃗ ≥ 0,

∑i xi = 1, and xi ≥ 0. That’s an LP! Yet another assumption we’ll now introduce is
the existence of a large-margin classifier, with margin at least ε. That is, x⃗ ⋅ a⃗j ≥ ε
for all j.

We now treat each dimension as an expert, run Multiplicative Weights with these

experts, and use the probabilities p
(t)
i in each round t as our attempted “solution”

for the LP. Here’s the key idea: in each iteration, unless p⃗(t) already solves the LP,
there is a point a⃗j with a⃗j ⋅ p⃗(t) < 0. And a⃗j ⋅ x⃗ ≥ ε.

So our algorithm is:

• Until p⃗(t) solves the LP:

– Pick a point a⃗j with a⃗j ⋅ p⃗(t) < 0

– Use aj,i as the reward for each expert i, to update p⃗(t+1) according to
Multiplicative Weights

By our earlier corollary, the expected reward over rounds t ∈ {1, . . . , T} is at least

∑t x⃗ ⋅ (a⃗jt − η∣a⃗j,t∣) −
ln(n)
η . And that’s at least T (ε − η) − ln(n)

η . On the other hand,
our expected reward is negative. So we have

T < ln(n)
η(ε − η)

.

Setting η = ε
2 , we have that T < 4 ln(n)

ε2
. So we must get a feasible solution after at most

4 ln(2)
ε2

rounds! (In particular, note that our algorithm is completely deterministic;
the probability distributions we dealt with are just an analysis tool.)
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