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PRELIMINARIES

These notes were taken during the spring semester of 2019 in Harvard’s Math 112, In-
troductory Real Analysis. The course was taught by Dr. Denis Auroux and transcribed by
Julian Asilis. The notes have not been carefully proofread and are sure to contain errors,
for which Julian takes full responsibility. Corrections are welcome at
asilis@college.harvard.edu.
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1. LECTURE 1 — JANUARY 29, 2019

One of the goals of the course is to rigorously study real functions and things like inte-
gration and differentiation, but before we get there we need to be careful about studying
sequences, series, and the real numbers themselves.

The real numbers have lots of operations that we use frequently without too much
thought: addition, multiplication, subtraction, division, and ordering (inequalities). One
of today’s goals is to convince you that even before we get there, describing the real num-
bers rigorously is actually quite difficult.

Definition 1.1. A set is a collection of elements.

Sets can be finite or infinite (there are different kinds of infinities), and they are not
ordered. For a set A, x ∈ A means that x is an element of A. x /∈ A means that x is
not an element of A. One special set is the empty set , which contains no elements. Other
important sets include that of the natural numbers N = {0, 1, 2, 3, . . . }, that of the integers
Z = {. . . ,−2,−1, 0, 1, 2, . . . }, and that of the rationals Q = { p

q : p, q ∈ Z, q 6= 0}
If every element of a set A is an element of a set B, we say A is a subset of B, and write

A ⊂ B. An example we’ve already seen is N ⊂ Z. For sets, A = B if and only if (iff) A⊂B
and B⊂A.

Definition 1.2. A field is a set F equipped with the operations of addition(+) and multiplication(·),
satisfying the field axioms. For addition,

• If x ∈ F, y ∈ F then x + y ∈ F
• x + y = y + x (commutativity)
• (x + y) + z = z + (y + z) (associativity)
• F contains an element 0 ∈ F such that 0 + x = x ∀x ∈ F
• ∀x ∈ F, there is −x ∈ F such that x + (-x) = 0

And for multiplication,

• If x ∈ F, y ∈ F then x · y ∈ F
• x · y = y · x (commutativity)
• (x · y) · z = z · (y · z) (associativity)
• F contains an element 0 6= 1 ∈ F such that 1 · x = x ∀x ∈ F
• ∀x ∈ F, there is 1

x ∈ F such that x · 1
x = 1

Finally, multiplication must distribute addition, meaning x(y + z) = xy + zx ∀x, y, z ∈ F.

The operation of multiplication is usually shortened from (·) to concatenation for con-
venience’s sake, so that x · y be written xy. One example of a field is Q with the familiar
operations of addition and multiplication.

Proposition 1.3. The axioms for addition imply:
(1) If x + y = x + z, then y = z (cancellation)
(2) If x + y = x, then y = 0
(3) If x + y = 0, then y = −x
(4) −(−x) = x
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Proof. (1). Assume x + y = x + z. Then:

x + y = x + z
(−x) + (x + y) = (−x) + (x + z)
((−x) + x) + y = ((−x) + x) + z

0 + y = 0 + z
y = z

(2) follows from (1) by taking z = 0. (3) and (4) take a bit more work, and are good
practice to complete on your own. It’s worth noting that nearly identical properties (with
nearly identical proofs) hold for multiplication. �

Definition 1.4. An ordered set is a set S equipped with a relation (<) satisfying:
• ∀x, y ∈ S, exactly one of x < y, x = y, or y < x is true.
• If x < y and y < z, then x < z (transitivity)

We will write x ≤ y to mean x < y or x = y (and because of the above definition, this is
an exclusive or).

Definition 1.5. An ordered field (F,+, ·,<) is a field with a compatible order relation,
meaning:

• ∀x, y, z ∈ F If y < z then x + y < x + z
• If x > 0 and y > 0 then xy > 0

Q was our example of a field, and fortunately it still works as an example, as Q is an
ordered field under the usual ordering on rationals.

Proposition 1.6. In an ordered field:
• If x > 0 then −x < 0, and vice versa
• If x > 0 and y < z, then xy < xz
• If x < 0 and y < z then xy > xz
• If x 6= 0, then x2 > 0. Thus 1 > 0
• 0 < x < y =⇒ 0 < 1

y < 1
x

Now we’ll talk about what’s wrong with the rational numbers. As you may expect,
we’ll begin by considering the square root of 2.

Proposition 1.7. There does not exist x ∈ Q such that x2 = 2

Proof. Assume otherwise, so ∃x = m
n ∈ Q such that x2 = 2. Take x to be a reduced fraction,

meaning that m and n share no factors. Then m2

n2 = 2 and m2 = 2n2 for m, n ∈ Z, n 6= 0.
2n2 is even, so m2 is even. Since the square of an odd number is odd, m must be even. So
m = 2k for some k ∈ Z. We have m2 = (2k)2 = 4k2 = 2n2. Dividing by 2, we see 2k2 = n2.
Using our reasoning from above, we see that n must be even. So m and n are both even,
which is a contradiction. �

It seems like we could formally add an element called the square root of 2, and do
so for similar algebraic numbers which appear as solutions to polynomials with rational
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coefficients, but this still wouldn’t solve our problem. The problem is that sequences of
rational numbers can look to be approaching a number, but not have a limit in Q.

Definition 1.8. Suppose E ⊂ S is a subset of an ordered set. If there exists β ∈ S such that
x ≤ β for all x ∈ E, then E is bounded above, and β is one of its upper bounds.

The definition for lower bounds is similar. In general, sets may not have upper or lower
bounds (think Z ⊂ Q).

Definition 1.9. Suppose S is an ordered set and E ⊂ S is bounded above. If ∃α ∈ S such
that:

(1) α is an upper bound for E
(2) if γ < α then γ is not an upper bound for E

then α is the least upper bound for E, and we write α = sup E.

Example 1.10. Consider {x ∈ Q : x < 0} as a subset of Q. Any rational y ≥ 0 is an
upper bound, and you can see that 0 is the least upper bound.

Now take A = {x ∈ Q : x < 0 or x2 < 2} as a subset of Q. The upper bounds of A
in Q are B = {x ∈ Q : x > 0 and x2 > 2}. It turns out that there’s no least upper
bound here. Though it’s a bit opaque, any upper bound y has a lower upper bound
2y+2
y+2 . This suggests that increases sequences of rationals which square to less than 2

have no limit, and likewise for positive, decreasing rationals which square to more
than 2.

Theorem 1.11 (Completeness). There exists an ordered field R which has the least upper bound property,
meaning every non-empty subset bounded above has a least upper bound.

2. LECTURE 2 — JANUARY 31, 2019

Last time we talked about least upper bounds and the fact that their existence isn’t
always guaranteed in Q. Greatest lower bounds are defined analogously, and their exis-
tence also isn’t guaranteed in Q. As it turns out, this is more than coincidence, since these
properties are equivalent.

Theorem 2.1. If an ordered set S has the least upper bound property, then it also has the greatest
lower bound property.

Proof. We won’t prove this rigorously, but here’s the idea: given a set E ⊂ S bounded
below, consider its set of lower bounds L. L isn’t empty because we assumed E is bounded
below, and it’s bounded above by all elements of E. So, because S satisfies the least upper
bound property, L has a least upper bound. You can show that this is the greatest lower
bound of E. �

Last time, we also saw the following important theorem.

Theorem 2.2. There exists an ordered field R with the least upper bound property which contains
Q as a subfield.
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Proof. There are two equivalent ways of doing this - one uses things called Cauchy se-
quences that we’ll be encountering later on, and the second uses Dedekind cuts. A cut is
a set α ⊂ Q such that

(1) α 6= ∅ and α 6= Q

(2) If p ∈ α and q < p then q ∈ α
(3) If p ∈ α, ∃r ∈ α with p < r

In practice, α = (−∞, a) ∩ Q, though (−∞, a) doesn’t technically mean anything right
now. So we’ve constructed a set (of subsets) which we claim is R, and now we have to
endow it with an order and operations respecting that order in order to get an ordered
field. We’ll define the order as such: for α, β ∈ R, we write α < β if and only if α 6= β and
α ⊂ β(⊂ Q). This is in fact an order.

To see that least upper bounds exist, we claim that the least upper bound of a non-
empty, bounded above E ⊂ R is the union of its cuts. You have to check that this is a cut
and in fact a least upper bound.

We define addition of cuts as α + β = {p + q : p ∈ α, q ∈ β}. The definition of multi-
plication is a bit uglier and depends on the ’signs’ of cuts. Then you have to check that all
the field axioms are satisfied. It’s not really worth getting into all of the details here, but
people have at some point checked that everything works as we’d like it to. �

Theorem 2.3 (Archimedean property of R). If x, y ∈ R, x > 0, then there exists a positive
integer n such that nx > y

Proof. Suppose not, and consider A = {nx : n a positive integer}. A is non-empty and
has upper bound y, so it has a least upper bound, which we’ll call α. α− x < α because
x > 0, so α− x is not an upper bound. Then ∃nx ∈ A such that nx > α− x. But adding x
to both sides, we have nx + x = (n + 1)x > α. But (n + 1)x ∈ A, so α was not an upper
bound at all. �

Theorem 2.4 (Density of Q in R). If x, y ∈ R and x < y, then ∃p ∈ Q such that x < p < y.

Proof. Since x < y, we have y− x > 0. By the previous theorem, there exists an integer n
with n(y− x) > 1, meaning y− x > 1

n . Also by the previous theorem, there exist integers
m1, m2 with m1 > nx and m2 > −nx, i.e. −m2 < nx < m1. Thus there exists an integer m
between−m2 and m1 with m− 1 ≤ nx < m. Then nx < m ≤ nx+ 1 < nx+ n(y− x) = ny.
Diving by n, we have x < m

n < y, and the p = m
n that we wanted. �

”The rational numbers are everywhere. They’re among us.” - Dr. Auroux. What we’re
saying is that between any two reals there’s a rational. A problem we encountered last
class is that we weren’t guaranteed the existence of square roots in Q≥0. Fortunately, this
has been remedied by constructing R.

Theorem 2.5. For every real x > 0 and every integer n > 0, there exists exactly one y ∈ R, y > 0
with yn = x. We write y = x

1
n .

Proof sketch. Consider E = {t ∈ R : t > 0, tn < x}. It’s non-empty and bounded above, so
it has a supremum we’ll call α. If αn < x, then α isn’t an upper bound of E, and if αn > x,
it’s not the least upper bound of E. �
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Definition 2.6. The extended real numbers consist of R∪ {−∞, ∞} with the order −∞ <
x < ∞ for all x ∈ R and the operations x±∞ = ±∞.

Notice that the extended real numbers don’t form a field since, among other reasons,
±∞ don’t have multiplicative inverses.

Definition 2.7. The complex numbers (C) consist of the set {(a, b, ) : a, b ∈ R} equipped
with the operations (a, b) + (c, d) = (a + c, b + d) and (a, b) · (c, d) = (ac − bd, ad + bc).
These operations make C a field.

It’s convention to write (a, b) ∈ C as a + bi. The complex conjugate of z = a + bi is
z = a− bi, and the norm of a complex number z = a + bi is |z| =

√
zz =

√
a2 + b2.

Proposition 2.8. For all z ∈ C,
• |z| ≥ 0 and |z| = 0 iff z = 0
• |zw| = |z||w|
• |z + w| ≤ |z|+ |w|

Definition 2.9. Euclidean space is Rk = {(x1, . . . , xk) : xi ∈ R} equipped with −→x +−→y =

(x1 + y1, . . . , xk + yk) and α−→x = (αx1, . . . , αxk) for α ∈ R.

Theorem 2.10. Defining −→x · −→y = ∑k
i=1 xiyi and ||x||2 = −→x · −→x , we have:

• ||x||2 ≥ 0 and ||x||2 = 0 ⇐⇒ −→x = 0
• ||−→x · −→y || ≤ ||−→x || · ||−→y ||
• ||−→x +−→y || ≤ ||−→x ||+ ||−→y ||

Proof. (1) Clear
(2) Some ugly computation

�

3. LECTURE 3 — FEBRUARY 5, 2019

Today we’ll be talking about sets.

Definition 3.1. For A, B sets, a function f : A → B is an assignment to each x ∈ A of an
element f (x) ∈ B

A is referred to as the domain of f , and the range of f is the set of values taken by f
(in this case, a subset of B). For E ⊂ A, we take f (E) = { f (x) : x ∈ E}. In this notation,
the range of f is f (A). On the other hand, for F ⊂ B, we define the inverse image, or
pre-image, of F to be f−1(F) = {x ∈ A : f (x) ∈ F}. Note that the pre-image of an element
in B can consist of one element of A, several elements of A, or be empty. It’s always true
that f−1(B) = A.

Definition 3.2. A function f : A → B is onto, or surjective, if f (A) = B. Equivalently,
∀y ∈ B, f−1(y) 6= ∅

Definition 3.3. A function f : A → B is one-to-one, or injective, if ∀x, y ∈ A, x 6= y =⇒
f (x) 6= f (y). Equivalently, f (x) = f (y) =⇒ x = y. Also equivalently, ∀z ∈ B, f−1(z)
contains at most one element.
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Definition 3.4. A function is a one-to-one correspondence, or bijection, if it is one-to-one
and onto, i.e. ∀y ∈ B, ∃!x ∈ A s.t. f (x) = y.

Defining ’size’, or cardinality, of finite sets is not too difficult, but extending this notion
to infinite sets is fairly difficult. Regardless of what the notion of size for infinite sets
should be, it should definitely be preserved by bijections (meaning that if A and B admit
a bijection between each other, they should have the same size). So we say that two sets
have the same cardinality, or are equivalent, if there exists a bijection between them.

Let Jn = {1, . . . , n} for n ∈N and J0 = ∅.

Definition 3.5. A set A is finite if it is in bijection with Jn for some n. Then n = |A|. A set
A is infinite if it is not finite.

Definition 3.6. A set A is countable if it is in bijection with N = {1, 2, 3, . . . }.
Informally, countability means that a set can be arranged into a sequence.

Definition 3.7. A set A is at most countable if it is finite or countable.

The above definition captures the idea that countability is the smallest infinity.

Definition 3.8. A set A is uncountable if it is infinite and not countable.

When sets are in bijection, we think of them as having the same number of elements. Ex-
tremely counter-intuitive pairs of sets which we then think of as having the same number
of elements arise.

Example 3.9. Z is in bijection with N. The map is

f (z)

{
z−1

2 z is odd
−z
2 z is even

In the above example, we construct a bijection between Z and a proper subset of Z,
N. This is a property of infinite sets, and in fact can considered the defining property of
infinite sets.

Definition 3.10. A sequence in a set A is a function from N to A.

By convention, f (n) is written xn, and the sequence itself is written {xn}n≥1. Despite the
brackets, {xn}n≥1 is not a set - it cares about order and allows for repeated elements.

Theorem 3.11. An infinite subset of a countable set is countable.

Proof. Let A be countable E ⊂ A an infinite subset. Then a bijection N → A gives a
sequence {xn}n≥1 whose terms lie in A. We construct a sequence of integers {nk}k≥1
via the procedure n1 equals the smallest integer n1 such that xn1 ∈ E. Having chosen
n1, . . . , nk−1, define nk to be the smallest integer strictly greater than nk−1 such that xnk ∈ E.
This procedure never terminates because E is infinite. Now set f : N → E, k 7→ xnk .
This injects because all the xi are distinct (because they were defined using an injection
N → A). This surjects because all e ∈ E ⊂ A = {x1, x2, x3, . . . } appear at some point in
the sequence {xi}i≥1 and have their indices selected by our procedure. �
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Definition 3.12. For sets A, B, the set A ∪ B consists exactly of things which are elements
of A and/or elements of B. More generally, given a collection of sets Eα indexed by α ∈ Λ,
define S =

⋃
α∈Λ Eα to be the set such that x ∈ S if and only if there exists α ∈ Λ with

x ∈ Eα.

Definition 3.13. For sets A, B, the set A ∩ B consists exactly of things which are elements
of A and elements of B. Similarly, S =

⋂
α∈A Eα is defined by x ∈ S ⇐⇒ x ∈ Eα ∀α ∈ Λ.

Example 3.14. Take A = {x ∈ R : 0 < x ≤ 1 = (0, 1]. For x ∈ A, let Ex = {y ∈ R :
0 < y < x}. Then Ex ⊂ Ex′ if and only if x ≤ x′. And

⋃
x∈A Ex = E1 = (0, 1). On the

other hand,
⋂

x∈A Ex = ∅.

Proposition 3.15 (Sets form an algebra). (1) A ∪ B = B ∪ A

(2) (A ∪ B) ∪ C = A ∪ (B ∪ C)

(3) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Theorem 3.16. Let {En}n≥1 be a sequence of countable sets. Then
⋃∞

i=1 En = S is countable.

Proof. Taking E1 = {x11, x12, x13, . . . }, E2 = {x21, x22, x23, . . . }, and so on, we can arrange
the elements of S in a sequence like so: S = {x11, x21, x12, x31, x22, x13, . . . }. Visually, we’re
arranging the Ei in a ray and proceeding along diagonal line segments starting on the top
left. This certainly isn’t rigorous, but it’s the essential idea. �

One corollary to this is that if A is at most countable and for each α ∈ A, Eα is at mot
countable, then

⋃
α∈A Eα is at most countable.

Theorem 3.17. If A is countable, then An is countable.

Proof. We induct on n. When n = 1, the claim follows by assumption. If An−1 is countable,
then An =

⋃
a∈An−1 A. Then An is a countable union of countable sets, and thus countable.

�

A result of this is that Q is countable, as it can be realized as a subset of Z2 via the
function m

n , in reduced form, maps to (m, n).

4. LECTURE 4 — FEBRUARY 7, 2019

Last time we saw that the countable union of countable sets is countable. It turns that
adding all solutions to polynomials over Z, and forming what are called the algebraic
numbers, still leaves you with countably many numbers.

Theorem 4.1. R is uncountable. Equivalently, the set A of sequences in {0, 1} is uncountable.
8



Proof. Suppose A is countable, meaning its elements can be listed sequentially. Then A
can be written as the collection

S1 = S11, S12, S13, . . .
S2 = S21, S22, S23, . . .
S3 = S31, S32, S33, . . .

...

where each Sij ∈ {0, 1} and every sequence in {0, 1} appears exactly once in this sequence
of Si. But consider the sequence

M =

{
0 Snn = 1
1 Snn = 0

M differs from Sn at the nth term, so the sequence of Si fails to include all sequences in
{0, 1}. �

A corollary to this is that the set of subsets of N is uncountable, since there’s a corre-
spondence between such subsets and sequences in {0, 1} via the rule that a sequence’s nth
term is 1 if n ∈ N is in the subset under consideration. This is more than coincidence - the
collection of subsets of any set, referred to as the power set of that set, is always strictly
larger than that set.

Now we’re going to pivot to metric topology. Informally, a metric space is a set equipped
with a notion of distance, which is the kind of structure we’ll need to discuss limits, con-
tinuity, and so on.

Definition 4.2. A metric space consists of a set X equipped with a distance function, or
metric, d : X× X → R such that ∀p, q, r ∈ X

(1) d(p, q) ≥ 0, with equality iff p = q
(2) d(p, q) = d(q, p)
(3) d(p, q) ≤ d(p, r) + d(r, q) [Triangle Inequality]

Our go-to examples for now are R equipped with the metric d(x, y) = |x − y| and Rk

with the metric d(x, y) =
√
(x1 − y1)2 + · · ·+ (xk − yk)2. From here on out, we’ll refer to

R and Rk as metric space without specifying their metrics, and we’ll be using these two
metrics. Note that a subset of a metric space is always a metric space, with the metric
induced by its parent set.

A natural thing to discuss now is the notion of proximity.

Definition 4.3. Let X be a metric space under the function d:
• A neighborhood of p ∈ X is a set Nr(p), for some radius r ∈ R+, consisting of

q ∈ X such that d(p, q) < r.
• p is an interior point of E ⊂ X if there exists a neighborhood N of p such that

Nr(p) ⊂ E for some r > 0.
• E ⊂ X is open if every point of E is an interior point.
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”This stuff is slightly mind-bending and will build on itself and become even more
mind-bending by next week.” - Dr. Auroux.

Example 4.4. In R, Nr(p) = (p− r, p + r) = {x ∈ R : p− r < x < p + r}. Also in R,
the interior points of [a, b] are (a, b), meaning [a, b] is not open.

Theorem 4.5. Every neighborhood is an open set.

Proof. Let E = Nr(p), and take x ∈ E. Then d(p, x) < r, and let h = r − d(p, x) > 0.
We claim Nh(x) ⊂ E. By the triangle inequality, for any y ∈ Nh(x), d(p, y) ≤ d(p, x) +
d(x, y) < d(p, x) + (1− d(p, x)) = r. So y ∈ E, and E contains Nh(x), making x an interior
point of E. Since x was selected arbitrarily, all of E’s points are interior points and E is
open. �

Definition 4.6. Let X be a metric space
• A point p ∈ X is a limit point of E ⊂ X if every neighborhood of p contains a point

q ∈ E such that q 6= p.
• If p ∈ E is not a limit point, then it is an isolated point of E.

Notice that isolated points are obligated to members of E while limit points are not.

Example 4.7. Take E = { 1
n : n = 1, 2, 3, . . . } ⊂ R. Then 1 is isolated (consider

N1
4
(1)). On the other hand, 0 is a limit point of E, since 1

n < r for any r > 0 for
sufficiently large n ∈N, meaning E intersects Nr(0) for any r > 0.

In R, the limit points of (a, b) are [a, b]. Likewise, the limit points of [a, b] are [a, b].

Definition 4.8. E ⊂ X is closed if it contains all its limit points.

Proposition 4.9. In any metric space X, X itself and ∅ are always both open and closed.

An important note is that the quality of a set being open or closed is not a property of
the set itself but of the set in which it lives. Strictly speaking, it doesn’t make sense to say
E is an open set (though, we’ll slightly abuse terminology and start saying that anyway).
It only makes sense to say E is an open subset of X.

Theorem 4.10. If p is a limit point of E in X, then every neighborhood of p contains infinitely
many points of E.

Proof sketch. If there were only finitely many points of E in a neighborhood of p, then one
could construct a neighborhood around p whose radius is the minimum of p’s distance to
these points. This neighborhood doesn’t contains any points of E, contradicting the fact
that p is a limit point. �

A corollary is that finite sets don’t have limit points.

Definition 4.11. A subset E of a metric space X is bounded if there exists q ∈ X and M > 0
such that E ⊂ NM(q).
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Definition 4.12. The complement of a subset E ⊂ X is Ec = {p ∈ X : p /∈ E}.

Theorem 4.13 (De Morgan’s Laws). Let Eα be an arbitrary collection of subsets of X. Then
(
⋃

α Eα)c =
⋂

α Ec
α.

Now we reveal an important relationship between open and closed sets, which is not
quite one of being ’opposite’.

Theorem 4.14. E ⊂ X is open if and only if Ec is closed.

Proof. ”This is a game of negations.” - Dr. Auroux. First suppose Ec is closed. Let x ∈ E.
Since Ec is closed, x is not a limit point of Ec. Then there exists a neighborhood of x
which contains no points in Ec distinct from x. Since x isn’t in Ec either, this neighborhood
lies entirely in E, meaning x is an interior point of E. We’re out of time, but the reverse
direction of the proof is very similar. �

5. LECTURE 5 — FEBRUARY 12, 2019

Recall our definitions from last class - the interior points of a set are those which admit
neighborhoods within the set, limit points of a set are points (not necessarily within the
set) whose neighborhoods always contain points of that set, and open sets consist of their
interior points while closed sets contain their limit points.

We showed last time that every neighborhood of a limit of a set contains infinitely many
points in that set, and that a set is open if and only if its complement is closed.

Theorem 5.1. (1) If Gα are open in X,
⋃

α∈A Gα is open in X.
(2) If Fα are closed in X,

⋂
α∈A Fα is closed in X.

(3) If G1, . . . , Gn are open,
⋂n

i=1 Gi is open.
(4) If F1, . . . , Fn are closed,

⋃n
i=1 Fi is closed.

Proof. Because a set is open if and only if its complement is closed, and because of DeMor-
gan’s laws, it suffices to prove only (a) and (c). For (a), assume x ∈ ⋃Gα. Then x ∈ Gα

for some α, and because Gα is open, ∃r such that Br(x) ⊂ Gα ⊂
⋃

α∈A Gα. For (c), suppose
x ∈ ⋂

Gi, and let ri be the radius such that Bri(x) ⊂ Gi. Taking r = min(ri), we have
Br(X) ⊂ Gi ∀i and thus Br(X) ⊂ ⋂Gi. �

It’s worth looking at counter-examples to see that we can’t do any better than finite
intersections or unions for open and closed sets, respectively.

Example 5.2.
⋂∞

k=1(−1
k , 1

k ) = {0}, so infinite unions of open sets are not in general
open. Additionally,

⋃∞
k=2[

1
k , 1− 1

k ] = (0, 1), so infinite unions of closed sets are not
in general closed.

Definition 5.3. The interior of a set E ⊂ X, written E̊, consists of all interior points of E.

Theorem 5.4. • E̊ is open.
• If F ⊂ E and F is open then F ⊂ E̊ (i.e. E̊ is the largest open subset contained in E).

11



Proof. • Say x ∈ E̊, so we have r such that Br(X) ⊂ E. We claim that Br(X) ⊂ E̊,
meaning x is an interior point of E̊. This follows from openness of open neighbor-
hoods; for any y ∈ Br(X), there exists an ry such that Bry(y) ⊂ Br(X) ⊂ E. So y is
an interior point of E and thus x is an interior point of E̊.
• Any x ∈ F admits a Br(X) ⊂ F. And Br(X) ⊂ E, so x ∈ E̊.

�

Definition 5.5. The closure of E, written E, is its union with the set of its limit points.

Theorem 5.6. (1) E is closed.
(2) E = E ⇐⇒ E is closed.
(3) If F ⊃ E and F is closed, then F ⊃ E. (i.e. E is the smallest closed set containing E).

Proof. (1) If p ∈ X and p /∈ E, then p is not in E and it’s not a limit point of E. So
there exists a Br(p) which does not intersect E. So p is an interior point of Ec. The
interior of Ec is open, by the previous theorem, so E is closed.

(2) Clear
(3) Also follows from (E)c = ˚(Ec)

�

Definition 5.7. E ⊂ X is dense if E = X

Example 5.8. Q is dense in R, since any neighborhood around a real number con-
tains rationals.

When E ⊂ Y ⊂ X, we say E is open relative to Y if E is an open subset of Y. To see
why this distinction is important, consider {x ∈ Q : x2 < 2} = (−

√
2,
√

2) ∩Q. This set
is closed in Q, but not in R.

Theorem 5.9. Let E ⊂ Y ⊂ X. Then E is open relative to Y if and only if E = G ∩ Y for some
open G ⊂ X.

Similarly, E ⊂ Y ⊂ X is closed relative to Y if and only if E = F ∩ Y for some closed F
in X.

6. LECTURE 6 — FEBRUARY 14, 2019

”A compact set is the next best friend you can have after a finite set.” - Dr. Auroux. You
have may have already seen a theorem in calculus which states that continuous functions
f : [a, b] → R are necessarily bounded and contain their maxima/minima. It turns out to
be the case that for a more general continuous function f : K → Y between metric spaces
with K compact, f (K) must be compact as well. This will imply that f (K) is bounded and
closed (meaning it contains its maximum/minimum).

Definition 6.1. An open cover of a subset E in a metric space X is a collection of open sets
{Gα} such that

⋃
α∈A Gα ⊃ E.

Definition 6.2. A subset K of a metric space X is compact if every open cover of K has a
finite subcover, meaning ∃α1, . . . , αn ∈ A such that K ⊂ (Gα1 ∪ · · · ∪ Gαn).

12



This definition is pretty opaque right now - let’s look at some examples.

Example 6.3. Any finite set is compact. In the worst case, any open cover can be
reduced to a subcover containing one open set for each of the set’s elements.

It’s somewhat miraculous that infinite compact sets exist at all. It would be pretty hard
to prove right now that [a, b] is compact given only the definition, but we’ll get to a proof
next week after developing some tools. As is the case with most definitions containing the
word , it’s much easier to prove that a set is not compact than to prove that it is.

Example 6.4. R is not compact. It suffices to provide a single cover which does
not admit a finite subcover. Consider the cover {(−n, n)}n∈N. This covers, because
every element of R lies in (−n, n) for some n, but any finite collection of subsets
amounts to a single interval (−m, m), which fails to cover R.

The problem we have right now is that is that it’s very difficult to prove that a set
is compact. For now, let’s think wishfully and consider the results we could conclude
if we knew a set were open. The first remarkable result is that, unlike openness, the
compactness of set in a metric space is a function only of the set and its metric, and not of
the metric space in which it resides. Simply put, it makes sense to say ’the set K is closed
under the metric d’, whereas it didn’t make sense to say ’the set K is open under the metric
d’ (in the second case, it matters what set K lives in).

Theorem 6.5. Suppose K ⊂ Y ⊂ X are metric spaces. Then K is compact as a subset of X if and
only if K is compact as a subset of Y.

Proof. Suppose K is compact relative to X. Assume {Vα} are open subsets of Y which cover
K. For each α, there exists an open Gα ⊂ X such that Vα = Y ∩ Gα. The Gα form an open
cover of K in X. By compactness of X, this can be reduced to a finite cover Gα1 , . . . , Gαn .
We then have:

Vα1 ∪ · · · ∪Vαn = (Gα1 ∩Y) ∪ · · · ∪ (Gαn ∩Y)
= (Gα1 ∪ · · · ∪ Gαn) ∩Y
⊃ K ∩Y
= Y

So Vα1 , . . . , Vαn form a finite subcover of K in Y, and K is compact in Y. In the other
direction, take a cover of K in X, intersect its constituent open sets with Y, and reduce it
to a finite subcover of K in Y. Then notice that the corresponding open sets in X form a
finite subcover of K. �

Theorem 6.6. Compact sets are bounded.

Proof. Consider the open cover K ⊂ ⋃
p∈K N1(p). Since K is compact, K ⊂ N1(p1) ∪ · · · ∪

N1(pn). Then given any two points q, r ∈ K, q ∈ N1(pi) and r ∈ N1(pj) for some i, j.
Then, by the triangle inequality, d(r, q) ≤ d(q, pi) + d(pi, pj) + d(pj, r) ≤ 2 + d(pi, pj). It
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follows that the distance between any two points in K is at most max{d(pi, pj)}+ 2, so it’s
bounded. �

Theorem 6.7. Compact sets are closed.

Proof. Say K ⊂ X is compact. Take p ∈ X, p /∈ K. The goal is to show that p is not a limit
point of K, meaning there’s a neighborhood of p that doesn’t intersect K. For q ∈ K, we
can construct neighborhoods of p and q that don’t intersect each other. Take Vq = Nr(q)
and Wq = Nr(p) for r = d(p,q)

3 . Constructing such Vq, Wq for all q ∈ K, we see that
the Vq collectively cover K. Since K is compact, they can be reduced to a finite subcover
Vq1 , . . . , Vqn . Now let W = Wq1 ∩ · · · ∩Wqn . Since W ∩Vqi ⊂ Wqi ∩Vqi = ∅ for each i, W is
disjoint from

⋃n
i=1 Vqi ⊃ K. So p ∈W is not a limit point, and K is closed. �

So no matter how you expand the universe that K lives in, you’ll never construct points
which are limit points of K.

Theorem 6.8. Closed subsets of compact sets are compact.

Proof. Take K compact (in some metric space X, though it doesn’t matter), and let F ⊂ K be
closed (in K or, equivalently, in X). Given an open cover of F, consider its union with Fc.
This covers K, so reduces to a finite subcover of K. Removing Fc from the finite subcover
if necessary, we’re left a finite subcover of F, as desired. �

Theorem 6.9 (Nested Interval Property). Let K be a compact set. Any sequence of non-empty,
nested closed subsets K ⊃ F1 ⊃ F2 ⊃ F3 ⊃ . . . has non-empty intersection;

⋂∞
n=1 Fn 6= ∅.

Proof. Suppose the intersection is empty. Let Gn = Fc
n. We have

⋃∞
n=1 Gn =

⋃∞
n=1 Fc

n =
(
⋂∞

n=1 Fn)c = K. So the Gn form a cover, and can be reduced to a finite subcover Gn1 , . . . , Gnk
for n1 < n2 < · · · < nk. So Fn1 ∩ · · · ∩ Fnk = ∅. But this intersection contains Fnk , and we
assumed that none of the Fi are empty, so we’ve arrived at a contradiction. �

Theorem 6.10. If E ⊂ K is an infinite subset and K is compact, then E has a limit point.

Proof. Say E doesn’t have a limit point. So every point p ∈ K admits a neighborhood
Vp containing at most 1 point of E (p itself). The Vp cover K, so they can be reduced
to a finite subcover of size, say, m. But then there are most m points in E, producing
contradiction. �

This property of a set is usually referred to as sequential compactness, because it turns
out that it is equivalent to saying that every sequence in K has a convergent subsequence.
We don’t know what that means yet, but we’ll get there in a few weeks.

7. LECTURE 7 — FEBRUARY 19,2019

Worksheet! The important takeaway is that compactness and sequential compactness
are equivalent in metric spaces.
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8. LECTURE 8 — FEBRUARY 21, 2019

The solutions to Tuesday’s worksheet have been posted online. Once more, recall that
a subset of a metric space is compact if each of its open covers reduce to a finite subcover.
We’ve seen that compactness is an intrinsic property, meaning it doesn’t depend on the
metric space that a set lives in (only the metric itself), and that compact sets are always
closed and bounded.

In general, it’s very rare for the converse to be true, meaning that closed and bounded
sets are compact. One very important special case, however, is Rk under the Euclidean
metric - sets here are compact if and only if they’re closed and bounded.

Theorem 8.1 (Nested Interval Property). Suppose Ii = [ai, bi] are a sequence of non-empty,
nested closed intervals in R. Then ∩∞

i=1 I 6= ∅.

Proof. Take α = sup(ai), as all the bi are upper bounds of the ai. Since α is an upper bound,
it’s greater than or equal to all the ai. And since all the bi are upper bounds, it’s less than
or equal to all the bi. So it’s in all the Ii, and it’s in their intersection. �

Theorem 8.2. Take Ii = [a1, b1] × · · · × [ak, bk] to be a sequence of nested k-cells in Rk. Then
their intersection isn’t empty.

Sketch. In each coordinate, the setup is as in the previous theorem (a sequence of non-
empty, nested closed intervals in R). By the previous result, there’s thus a value in each
coordinate which lies in the intersection of the sets restricted to that coordinate. Sewing
those values together gives a point which is in the intersection of the closed sets. �

Theorem 8.3. Every k-cell in Rk is compact.

Sketch. Suppose that a k-cell I is equipped with an open cover which admits no finite sub-
cover. Subdivide I into 2k cells, (at least) one of which must fail to admit a finite subcover
(otherwise I would admit a finite subcover). Subdivide this cell 2k into 2k cells, one of
which must fail to admit a subcover. Continuing in this fashion, we obtain a sequence of
k-cells I1, I2, . . . such that (taking D to be the the distance between the ’corners’ of I)t:

(1) I ⊃ I1 ⊃ I2 ⊃ . . .
(2) In ⊂

⋃
α Gα doesn’t have a finite subcover

(3) If x, y ∈ In, then |x− y| ≤ D/2n.
By the previous theorem, the intersection of the In is non-empty. Select some x in the
intersection - it lies in Gα0 for some Gα0 . Since Gα0 is open, there exists an r > 0 such
that Nr(X) ⊂ Gα0 . Pick n such that D/2n < r. Then ∀y ∈ In, d(x, y) ≤ D/2n < r, so
In ⊂ Nr(x) ⊂ Gα0 . But this contradicts (b), as we’ve found a finite subcover for In, namely
just Gα0 . �

Theorem 8.4 (Heine-Borel). Subsets of Rk, under the Euclidean metric, are compact if and only
if they’re closed and bounded.

Proof. We’ve already seen that compact sets are closed and bounded (in fact, this is always
true). In the other direction, any closed, bounded set can be witnessed as a subset of a
sufficiently large k-cell in Rk. So it’s a closed subset of a compact set, which means it’s
compact. �
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Theorem 8.5 (Weierstrauss). Every infinite bounded subset of Rk has a limit point.

Proof. Since the set is bounded, it lives in a compact k-cell. Infinite subsets of compact sets
have limit points, so the set has a limit point. �

Definition 8.6. Subsets A, B ⊂ X are separated if A ∩ B = ∅ and A ∩ B = ∅.

Example 8.7 (0,1). and (1,2) are disjoint but not separated. (0,1) and (1,2) are both
disjoint and separated.

Definition 8.8. E ⊂ X is connected if it cannot be decomposed into the union of non-
empty separated sets.

As with compactness, this is an intrinsic property of E, irrespective of the larger metric
space in which it lives. More explicitly, E is connected in X if and only if E is connected in
E.

Notice that if X = A ∪ B with A, B separated then B = Ac. And A ∩ B = ∅, so A = A,
meaning A is closed. Similarly, B is closed. So A and B are both closed and (because their
complements are closed) open. So X is connected if and only if the only ’clopen’ sets are
∅ and X.

Theorem 8.9. E ⊂ R is connected if and only if x, y ∈ E and x < z < y ∈ E implies z ∈ E.

Proof. First suppose x < z < y with x, y ∈ E, z /∈ E. Then E = (−∞, z) ∪ (z, ∞), so it’s not
connected. Now suppose E is not connected, meaning E = A∪ B for A, B separated. Take
x ∈ A and y ∈ B. Assume without loss of generality that x < y. Let z = sup(A ∩ [x, y]).
If z /∈ A, then we’re done. If z ∈ A, z /∈ B, and you can find a nearby z′ that produces
contradiction. �

9. LECTURE 9 — FEBRUARY 26, 2019

Definition 9.1. A sequence {pn} in a metric space X converges if ∃p ∈ X, the limit of the
sequence, such that ∀ε > 0, ∃N such that ∀n ≥ N, d(pn, p) < ε. Then we write pn → p, or
limn→∞ pn = p. If there exists no such p, we say that {pn} diverges.

This definition is a bit intimidating, but all it’s saying is that for any open ball around
the limit, the elements of a sequence eventually stay in the ball.

Definition 9.2. The range of a sequence {pn} ⊆ X is the set consisting of the sequence’s
elements. A sequence is bounded if its range is a bounded subsets of X.

Because sequences allow repetition, the range of a sequence can be finite - for instance,
consider the range of pn = (−1)n ∈ R.

Example 9.3. pn = (−1)n ∈ R diverges. On the other hand, limn→∞
1
n = 0.

Proposition 9.4. pn → p ⇐⇒ d(pn, p)→ 0
16



Proof. Note that the right hand side is a sequence in R. That it converges to 0 means that
∀ε > 0∃N s.t. ∀n ≥ N, |d(p, pn)− 0| < ε. But |d(p, pn)− 0| is just d(p, pn), so this in fact
corresponds to the statement that pn → p. The other direction follows fairly directly from
definition. �

Theorem 9.5. pn → p if and only if every neighborhood of p contains pn for all but finitely many
n.

Proof.

pn → p ⇐⇒ ∀ε > 0 ∃N s.t ∀n ≥ N, pn ∈ Nε(p)
⇐⇒ ∀ε > 0, for all but finitely many n, pn ∈ Nε(p)

�

The second line used the fact that for a set of integers, ’all but finitely many’ is the same
as ’all the sufficiently large’.

Theorem 9.6. Limits are unique.

Proof. Suppose pn → p and pn → p′. If p 6= p′, then take ε = 1
3 d(p, p′). Note that Nε(p)

and Nε(p′) are disjoint. That pn → p implies that all but finitely many of the pn are in
Nε(p), and likewise for p′ and Nε(p′). Since they’re disjoint, this is a contradiction. �

Proposition 9.7. Convergent sequences are bounded.

Sketch. Say pn → p. Then only finitely many of the pn aren’t in N1(p). Those in N1(p) are
certainly bounded, and the finitely many terms which aren’t in N1(p) are bounded (finite
collections of numbers are always bounded). The union of bounded things is bounded, so
this is bounded. �

Proposition 9.8. If E ⊂ X and p is a limit point of E, then there exists a sequence {pn} with
terms in E such that pn → p in X.

Proof. Since p is a limit point of E, then within any neighborhood of size 1
n lies a point of

E. Form a sequence in this way, so that pn lies in N1
n
(p). Then d(p, pn) → 0 and thus

pn → p. �

Theorem 9.9. Suppose {sn}, {tn} are sequence in R or C with limits s and t, respectively. Then
• sn + tn → s + t
• csn → cs and sn + c→ s + c
• sntn → st
• If sn 6= 0 and s 6= 0, then 1

sn
→ 1

s

Proof. • Given ε > 0, ∃N1 s.t. ∀n ≥ N1, |sn − s| < ε. And ∃N2 s.t. ∀n ≥ N2,
|tn− t| < ε. Then for n ≥ max(N1, N2), |(sn + tn)− (s+ t)| = |(sn− s)+ (tn− t)| ≤
|sn− s|+ |tn− t| ≤ ε+ ε. We’ve slightly exceeded the distance ε that we’re allowed
to move. If we had just selected the Ni to restrict sn and tn within ε/2 of their limits,
this would have worked. Many proofs of convergence will be of this general form.
• Exercise
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• We have sntn − st = (sn − s)(tn − t) + s(tn − t) + t(sn − s). Fix ε > 0. ∃N1 s.t
∀n ≥ N, |sn − s| <

√
ε, and ∃N2 s.t. ∀n ≥ N2, |tn − t| <

√
ε. For n ≥ max(N1, N2),

|(sn − s)(tn − t)| <
√

ε
√

ε < ε. Hence (sn − s)(tn − t) → 0. It’s easier to see that
s(tn − t) + t(sn − s) converges to 0 (they’re just scaled sequences which converge
to 0). So our original term is the sum of two sequences which converge to 0, and
thus it converges to 0.
• Exercise

�

Theorem 9.10. (1) {xn} ∈ Rk converges to x = (α1, . . . , αk) if and only if each coordinate
of the xn correspond to the appropriate αi.

(2) If xn → x, yn → y in Rk and βn → β in R, then xn + yn → x + y, βnxn → βx, and
xn · yn → x · y.

Is there a way to consider whether a sequence ’wants to converge’ or ’should converge’
without considering its limit? A mathematician called Cauchy answered this question in
the 19th century.

Definition 9.11. A sequence {pn} in a metric space X is a Cauchy sequence if ∀ε > 0, ∃N
such that ∀m, n ≥ N, d(pm, pn) < ε.

Definition 9.12. The diameter of a non-empty, bounded subset E ⊂ X is diamE = sup{d(p, q) :
p, q ∈ E}.

Now given a sequence pn, take En = {pn, pn+1, . . . }. Then the definition of a sequence
being Cauchy is equivalent to the condition that the diameters of En converge to 0.

Theorem 9.13. (1) In any metric space, every convergent sequence is Cauchy.
(2) If X is a compact metric space, and {pn} is a Cauchy sequence in X, then {pn} converges

in X.
(3) In Rk, every Cauchy sequence converges.

Proof. (1) If pn → p and ε > 0, then ∃N such that ∀n ≥ N, d(pn, p) < ε
2 . Then, by the

triangle equality, for m, n ≥ N, d(pm, pn) ≤ ε.
(2) We’ll need two results to prove this: first, for bounded E ⊂ X, diam(E) = diam(E).

Secondly, if Kn are a sequence of nested, non-empty compact sets and diam(Kn)→
0, then ∩∞

n=1Kn contains exactly one point. To see the first claim, note that given
p, q ∈ E and ε > 0, ∃p′, q′ ∈ E such that d(p, p′) < ε and d(q, q′) < ε. Then
d(p, q) ≤ ε + diamE + ε. Since ε can be made arbitrarily small, it must be that
diam(E) = diam(E). To see that the second claim holds, recall that we’ve already
shown that the intersection of the Kn is not empty. But it has arbitrarily small
diameter (as its contained in each of the Kn), so it must contain exactly one point.

�

The third result is sometimes called the Cauchy criterion of convergence. We’ll pick up
this proof next time.
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10. LECTURE 10 — FEBRUARY 28, 2019

Recall that a sequence pn converges to p if eventually the points of pn stay as close to p
as you’d like them to. We also saw the following big theorem last time:

Theorem 10.1. (1) Every convergent sequence is Cauchy.
(2) In a compact space, every Cauchy sequence converges.
(3) In Rk, Cauchy sequences converge.

Proof. We proved (1) last time. For (2), let pn be a Cauchy sequence in a compact space K.
Let En = {pn, pn+1, . . . }, and consider K ⊃ E1 ⊃ E2 ⊃ . . . . This is a decreasing sequence
of non-empty compact subsets, so its intersection is non-empty. And since the diameters
of the En approach zero, this intersection contains exactly one point, say p. To see that
pn → p, fix ε. We know that ∃N such that diam(EN) = diam(En) < ε. Then ∀n ≥ N,
pn, p ∈ En. So d(p, pn) ≤diam(En) < ε.

For (3), first note that Cauchy sequences are bounded (only finitely many terms are not
within distance ε of an appropriately chosen pn′). So the Cauchy sequence lies in a k-cell,
which is compact, and we can apply (2). �

Definition 10.2. A metric space X is complete if its Cauchy sequences converge.

Thus, we’ve shown that compact spaces are complete and that Rk is complete. On
the other hand, Q is not complete because 1, 1.4, 1.41, 1.414, . . . is Cauchy but does not
converge (as

√
2 /∈ Q).

For a metric space X which fails to be complete, it’s possible to build a larger metric
space X∗ ⊃ X, the completion of X, which is complete. In fact, one can define R to be the
completion of Q.

Definition 10.3. Given a sequence {pn} ∈ X and a strictly increasing sequence of positive
integers {nk}, the sequence {pnk} = pn1 , pn2 , pn3 , . . . is called a subsequence of {pn}.

If {pnk} → p, we say that p is a subsequential limit of {pn}.

Example 10.4. Consider pn = (−1)n. The subsequence p2k converges to 1, while the
subsequence p2k+1 converges to -1.

Proposition 10.5. pn → p ⇐⇒ every subsequence of {pn} converges to p

Proof. If every subsequence of {pn} converges to p, then the subsequence consisting of all
terms converges to p, so pn converges to p. In the opposite direction, suppose pn converges
to p. Then for any choice of ε, there’s an N such that n ≥ N implies d(pn, p) < ε. Then this
N works for any subsequence of pn, because the Nth term in any subsequence is either
the Nth term in the original subsequence or a term of strictly higher index. �

Theorem 10.6. (1) Every sequence in a compact metric space has a convergent subsequence.
(2) Every bounded sequence in Rk has a convergent subsequence
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Proof. (1) If {pn} has infinite range, then its range has a limit point p. Now we can con-
struct a subsequence {pnk} such that d(pnk , p) < 1

k , and that sequence converges to
p (we have to be sure to pick nk > nk−1). If {pn} has finite range, then a value in its
range is repeated infinitely many times. Take the subsequence which consists only
of that value.

(2) Apply (1) to a k-cell containing {pn}.
�

Theorem 10.7. p is a subsequential limit of {pn} ⇐⇒ every neighborhood of p contains infin-
itely many points in {pn}.
Theorem 10.8. The set of subsequential limits of a sequence {pn} is closed.

For sequences in R, we’ve seen that convergence implies boundedness, which implies
the existence of a convergent subsequence. None of the reverse directions of these claims
is true.

Definition 10.9. A sequence of real numbers {sn} is monotonically increasing if sn ≤
sn+1 ∀n ∈ N, and monotonically decreasing if sn ≥ sn+1 ∀n ∈ N. A sequence is mono-
tonic if it’s either monotonically increasing or decreasing.

From here on, we’ll take {sn} to mean a sequence of real numbers.

Theorem 10.10 (Monotone Convergence). A monotone sequence {sn} converges if and only if
it is bounded.

Proof. The range of this sequence has a supremum - call it α. Since α − ε isn’t an upper
bound of the range, there’s some sN ≥ α− ε. Since the sequence is monotonic, all sn′ for
n′ ≥ N exceed sN, and are thus within distance ε of α. So α is the limit of sn. The other
direction follows from the fact that convergent sequences are always bounded. �

Definition 10.11. We’ll say sn → ∞ if ∀M ∈ R, ∃N ∈ N s.t. n ≥ N =⇒ sn > M.
Similarly, sn → −∞ if this holds with sn < M.

It’s important to note that we still consider sn satisfying the above conditions to be
divergent.

Given {sn} (as always, in R), let E consist of x ∈ R ∪ {±∞} such that there exists a
subsequence snk → x. Note that E is never empty, because if sn is bounded it must contain
a subsequential limit, by sequential compactness. If sn isn’t bounded, then it has either ∞
or −∞ as a subsequential limit.

Now define s∗ = sup E =: lim sup sn and s∗ = inf E = lim inf sn. These are sometimes
called the upper and lower limits of a sequence, and are meant to capture the idea of a
sequence’s ’eventual bounds.’

Theorem 10.12. (1) There exists a subsequence snk → s∗.
(2) If s∗ is real (i.e. not ±∞), then ∀ε > 0, ∃N s.t. ∀n ≥ N, sn < s∗ + ε.

And s∗ is uniquely characterized by these properties.

Proof Sketch. (1) If E is bounded above, then because it’s closed it contains its supre-
mum. If E isn’t bounded, s∗ = ∞ and indeed sn has ∞ as a subsequential limit.
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(2) If this weren’t the case, you could construct a subsequence of sn with limit strictly
greater than s∗. The full proof appears in Rudin.

�

Example 10.13. (1) sn = (−1)n n+1
n has lim inf = −1 and lim sup = 1. Note

that these values don’t bound the sequence but are eventual bounds, up to
subtraction/addition by ε.

(2) lim sn = s if and only if lim sup sn = lim inf sn = s.
(3) Take sn to be a sequence enumerating Q. Then every real number is a sub-

sequential limit - this sequence has uncountably many subsequences with
distinct limits!

Theorem 10.14. If sn ≤ tn ∀n (or ∀n ≥ N), then lim inf sn ≤ lim inf tn and lim sup sn ≤
lim sup tn.

11. LECTURE 11 — MARCH 5, 2019

The midterm is next Tuesday - you’re allowed to bring a copy of Rudin, but if you’re
leafing through it to remember definitions you’ll probably run out of time. The exam will
be a mix of proofs and examples, but you shouldn’t expect to have to recreate a page-long
proof that we saw in class, because there’s just not enough time for that.

Now about sequences:

Theorem 11.1. The following hold for real sequences:
(1) For p ∈ R+, limn→∞

1
np = 0

(2) For p ∈ R+, limn→∞ p1/n = 1
(3) limn→∞ n1/n = 1
(4) If |x| < 1, limn→∞ xn = 0
(5) If |x| < 1, p ∈ R, then limn→∞ npxn = 0

We won’t be going over this proof, but it appears in Rudin.

Definition 11.2. In R, C, Rk, one can associate to a sequence {an} a new sequence sn =
∑n

k=1 ak of partial sums of the series ∑∞
n=1 an. This infinite sum is only a symbol, which

may not equal any element in R, C, Rk. The limit s of {sn}, if it exists, is the sum of the
series, and we write ∑∞

n=1 an = s.

Because it’s often difficult to calculate the limit s, abstract convergence criteria for {sn},
which don’t make use of a known limit, are useful. We’ve already seen the Cauchy crite-
rion for convergence, which states the convergence in R, C, and Rk is equivalent to being
Cauchy. Restating this in the language of series, we arrive at the following result.

Proposition 11.3 (Cauchy criterion). ∑∞
i=1 an converges if and only if ∀ε > 0, ∃N ∈ N such

that ∀m ≥ n ≥ N, |∑m
k=n ak| ≤ ε.

Proof. |∑m
k=n ak| = |sm − sn−1|. Invoke Cauchy criterion for sequence convergence. �

Taking the case m = n, we arrive at a necessary condition for series convergence.
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Theorem 11.4. If ∑∞
i=1 an converges, then an → 0.

Proof. Given ε > 0, the Cauchy criterion implies the existence of an N such that ∀n = n ≥
N, |an| < ε. This is precisely convergence of an to 0. �

Example 11.5. To see that the above condition is necessary but not sufficient for
series convergence, consider the series ∑∞

i=1
1
n . It diverges, despite the fact that 1

n →
0.

”The terms need to go to zero, but they need to go to zero in a friendly enough way.” -
Dr. Auroux. Once again, we’ll use a result about sequences to arrive at a result about series
for free - this time it’ll be monotone convergence (that bounded, monotone sequences
converge) rather than the Cauchy criterion.

Theorem 11.6. A series in R with an ≥ 0 converges if and only if its partial sums form a bounded
sequence.

Proof. Because an ≥ 0, the sequence of partial sums is monotone. Because they’re bounded,
monotone convergence guarantees us the existence of a limit. �

Starting now, we’ll get a bit lazy and use ∑ an to mean ∑∞
n=1 an.

Theorem 11.7 (Comparison test). (1) If |an| ≤ cn for all n ≥ N and ∑ cn converges, then
∑ an converges.

(2) If an ≥ dn ≥ 0 for all n ≥ N and ∑ dn diverges, then ∑ an diverges.

Proof. Under the conditions of (2), if ∑ an were to converge then ∑ dn would converge by
(1), producing contradiction. So (1) =⇒ (2). To see that (1) holds, note that the Cauchy
criterion for ∑ cn implies the Cauchy criterion for ∑ an. In particular,

|
m

∑
k=n

ak| ≤
m

∑
k=n
|ak| ≤

m

∑
k=n

ck

Since the rightmost side becomes arbitrarily small for n, m greater than appropriately large
N, so does the leftmost side. Thus, by the Cauchy criterion for series, ∑ an converges. �

Theorem 11.8. If |x| < 1, then ∑∞
n=0 xn = 1

1−x . If |x| ≥ 1, then ∑ xn diverges.

Proof. If |x| < 1, sn = 1 + x + · · ·+ xn = 1−xn+1

1−x , which converges to 1
1−x . If |x| ≥ 1, then

xn does not have limit 0, so the series doesn’t converge. �

Theorem 11.9. ∑ 1
np converges if p > 1 and diverges if p ≤ 1.

Proof. First a lemma - a series ∑ an of weakly decreasing, non-negative terms converges
if and only if ∑∞

k=0 2ka2k = a1 + 2a2 + 4a4 + 8a8 + . . . converges. Since an ≥ an+1, we
have that ∑2m−1

n=1 an ≤ ∑m
k=0 2ka2k . So if the new, weird sequence converges, the original se-

quence does as well, because its partial sums are smaller and, by monotone convergence,
convergence is equivalent to bounded partial sums. In the other direction, suppose that
the original sequence converges and note that a1 + a2 + · · ·+ a2k ≥ 1

2 a1 + a2 + 2a4 + 4a3 +
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· · · + 2k−1a2k . The left hand side is a partial sum of the original sequence and the right
hand side is 1

2 of a partial sum of the new, weird sequence. So if the new weird, sequence
were unbounded, the original sequence would be as well. We conclude that the weird
sequence converges, as desired.

Now we can begin the main proof. If p ≤ 0, then 1
np doesn’t converge to 0, so the sum

diverges. Suppose p > 0 - applying the lemma with an = 1
np , we see that 2ka2k = 2k 1

2kp =
1

2k(p−1) . This is a geometric series, and it converges if and only if | 1
2p−1 | < 1, which happens

iff p > 1. �

Theorem 11.10. ∑ 1
n(log n)p converges if and only if p > 1.

The proof uses our previous lemma about the sequence ∑ 2ka2k .

Definition 11.11. e = ∑∞
n=0

1
n!

Theorem 11.12. limn→∞(1 + 1
n )

n = e

A careful proof of this theorem appears in Rudin, but it comes down to lots of techni-
calities with the binomial formula and bounds - it’s not very enlightening.

Theorem 11.13. e is not rational. In fact, it’s not even algebraic.

12. LECTURE 12 — MARCH 7, 2019

Today we’ll talk more about series - this stuff won’t appear on the midterm, but it will
appear on the final (and it’s pretty cool).

Theorem 12.1 (Root test). Given ∑ an, let α = lim sup n
√
|an|. Then

(1) If α < 1, then ∑ an converges.
(2) If α > 1, then ∑ an diverges.
(3) If α = 1, the test is inconclusive.

Proof. If α < 1, take α < β < 1. Since β is strictly greater than all the subsequential limits
of n
√
|an|, ∃N s.t. n

√
|an| ≤ β for n ≥ N. Otherwise, one could construct a subsequence

with limit at least β. So for n ≥ N, |αn| ≤ βn, and βn is a convergent geometric series, so
∑ αn converges by comparison.

If α > 1, take α > β ≥ 1. By definition of α, there are infinitely many terms in n
√
|an|

which exceed β. These terms have |an| ≥ βn. So the series doesn’t converge (formally,
because the an don’t converge to 0). �

Theorem 12.2 (Ratio test). Fix a series ∑ an:
(1) If lim sup | an+1

an
| < 1, then ∑ an converges.

(2) If | an+1
an
| ≥ 1 for all n ≥ N, then ∑ an diverges.

Proof. For (1), take lim sup | an+1
an
| < β < 1, then ∃N such that ∀n ≥ N, | an+1

an
| ≤ β. Then

|an| ≤ cβn for some c. Since β < 1, that series converges and ∑ an converges by compar-
ison. For (2), | an+1

an
| ≥ 1 after N, so |aN| ≤ |aN+1| ≤ . . . , so the an don’t even converge to

0. �
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It turns out that the root test is stronger than the ratio test. The reason why is that for
any sequence of positive real numbers cn, lim sup n

√
cn ≤ lim sup cn+1

cn
. The reason why we

use the ratio test is that it’s often easier to compute cn+1
cn

than n
√

cn.

Example 12.3. Consider ∑ an where an =

{
1

2n n even
1

3n n odd
. This series converges be-

cause it’s less than ∑ 1
2n . The root test detects this, because n

√
|an| ∈ { 1

2 , 1
3}. The

ratio test, however, fails to detect this, because an+1
an

exceeds 1 at even terms, where
3n

2n+1 = 1
2(

3
2)

n. And lim sup an+1
an

= ∞, as 1
2(

3
2)

n grows arbitrarily large.

Given a sequence {cn} of complex numbers, ∑ cnzn = c0 + c1z + c2z2 + . . . forms a
power series. This is a fairly natural generalization of the polynomial, but whether it
actually makes sense as a quantity depends on the convergence of the series. For now,
we’ll think of z ∈ C as a number, but later in the course we’ll think of it as a variable and
consider the differentiability of these functions.

Theorem 12.4. Let α = lim sup n
√
|cn|, and let R = 1

α
1. Then ∑ cnzn converges if |z| < R and

diverges if |z| > R. R is referred to as the radius of convergence of ∑ cnzn.

Proof. Let an = cnzn, and apply the root test, noting that n
√
|an| = n

√
|cn||z| and lim sup n

√
|an| =

|z|
R . �

Notice that we haven’t said anything about what happens when |z| = R. In that case,
it’s difficult to say anything without considering the particular power series at hand.

Example 12.5. ∑ zn has cn = 1 ∀n, so R = 1. On the other hand, ∑ nnzn has cn = nn;
since n

√
|cn| = n→ ∞, R = 0. And ∑ 1

n! z
n = ez has R = ∞.

An alternating series is one whose terms have alternating signs. More explicitly, either
all its odd terms are positive and its even terms are negative, or vice versa. An example is
∑(−1)nan where an > 0; ∀n.

Theorem 12.6. Suppose {an} ∈ R is an alternating series where |a1| ≥ |a2| ≥ |a3| ≥ . . . and
an → 0. Then ∑ an converges.

Proof. Let sn = ∑n
k=1 ak. Then, because the sequence alternates and |ak+1| ≥ |ak|,

s2 ≤ s4 ≤ s6 · · · ≤ s5 ≤ s3 ≤ s1

So s2m and s2m+1 are monotonic, bounded sequences, meaning they converge. They con-
verge to the same thing because s2m+1 − s2m = a2m+1 → 0. �

The above theorem is pretty remarkable, because it’s a rare case in which convergence
is not dependent upon the rate at which the terms of the series converge to 0.

1If α = ∞, we define 1
α = 0. Similarly, if α = 0, we define 1

α = ∞
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Definition 12.7. ∑ an converges absolutely if ∑ |an| converges.

Proposition 12.8. Absolute convergence implies convergence.

Proof. Use the Cauchy criterion. |∑m
k=n ak| ≤ ∑m

k=n |ak|, and the right hand side gets arbi-
trarily small for sufficiently large n because ∑ |an| converges. �

The rest of the class will be dedicated to operations on series which are seemingly safe
but in fact require the condition of absolute convergence in order to be safe.

Theorem 12.9. If ∑ an = A and ∑ bn = B, then their sum ∑(an + bn) = A + B.

Proof. Look at the partial sums. ∑n
k=1(ak + bk) = ∑n

k=1 ak + ∑n
k=1 bk. We learned a few

weeks ago that the limit of the sum is the sum of the limits, so this converges to A+ B. �

So defining addition of series is not so hard, and is as well-behaved as we’d like it to
be2. Defining multiplication is much less obvious, however. Consider

(a0 + a1 + a2 + . . . )(b0 + b1 + b2 + . . . )

One way to make sure all terms hit each other is to group them by the sum of their indices,
and define the sum like so:

a0b0 + (a1b0 + a0b1) + (a2b0 + a1b1 + a0b2) + . . .

Definition 12.10. The product of ∑ an and ∑ bn is ∑ cn where cn = ∑n
k=0 akbn−k.

We’ve defined a product but this doesn’t mean anything yet, as we don’t know anything
about the behavior of this operation on series. Unfortunately, it turns out that it does not
in general send convergent series to convergent series.

Example 12.11. By our theorem for alternating series, ∑ (−1)n
√

n+1
converges. Its product

with itself, however, is a sequence of positive terms which does not converge. One
can check that |cn| does not converge to 0, and is in fact always at least 2.

Fortunately, things are nicer with the assumption of absolute convergence, though we
aren’t going to prove why right now.

Theorem 12.12. If ∑ an = A converges absolutely and ∑ bn = B converges, then their product
converges to AB.

Definition 12.13. Let {nk} be a sequence of positive integers in which every positive inte-
ger appears exactly once. Then the series ∑∞

k=1 ank is a rearrangement of the series ∑∞
k=1 ak.

Theorem 12.14 (Riemann). Let ∑ an be a series of real numbers which converges but does not
converge absolutely. Then for any α, β ∈ R with α ≤ β, there exists a rearrangement ∑ a′n whose
partial sums s′n satisfy lim inf s′n = α1, lim sup s′n = β.

2Multiplying series by constants is also not so hard, as ∑ can = c ∑ an when ∑ an converges.
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This is an insane theorem, and shows that rearrangements are in general not at all safe.
In particular, they can be used to warp the upper and lower limits of any convergent
but not absolutely convergent series of real numbers to anything you want. Fortunately,
there’s something of an antithesis to this theorem.

Theorem 12.15. If ∑ an converges absolutely to A, then all of its rearrangements converge to A.

13. LECTURE 13 — MARCH 14, 2019

:(

14. LECTURE 14 — MARCH 26, 2019

Guest lecture by Dr. Williams!

Definition 14.1. For X, Y metric spaces, f : X → Y is continuous at p ∈ X if ∀ε > 0,
∃δ > 0 such that ∀x ∈ X, ρX(x, p) < δ =⇒ ρY( f (x), f (p)) < ε.

We say that f is continuous if it’s continuous at all points in its domain. Intuitively, this
mean that we can restrict output by restricting input.

Remark 14.2. If p is not an isolated point, continuity of f at p is equivalent to the statement
limx top f (x) = f (p).

Theorem 14.3. f : X → Y is continuous if and only if for all open V ⊆ Y, f−1(V) ⊆ X is open.

Theorem 14.4 (Main Theorem). If f : X → Y is continuous and X is compact, then f (X) is
compact.

Proof. Let {Vα} be an open cover of f (X), meaning ∪αVα ⊇ f (X). Since f is continuous,
the f−1(Vα) are open, and since anything in x has image in one of the vα, the f−1(Vα)
cover X. Since X is compact, this reduces to a finite subcover f−1(Vα1), . . . , f−1(Vαn).
Then Vα1 , . . . , Vαn form a finite subcover of f (X), as desired. �

We’ll see that this is really a generalization of the extreme value theorem, and it’ll be
quite useful for the rest of the lecture. Let’s examine some of its corollaries.

Corollary 14.5. If f : X → Y is continuous and X is compact, then f (X) is closed and bounded.

Corollary 14.6. If F : X → R is continuous and X is compact, then ∃p ∈ X such that f (p) =
supx∈X f (x) and ∃q ∈ X such that f (q) = infx∈X f (x). In words, f achieves maximal/minimal
values.

Proof. By the main theorem, f (X) ⊂ R is compact, so it’s closed and bounded. Since it’s
bounded, sup f (x) and inf f (x) exist in R, and since it’s closed, these values are elements
of f (X), as desired. �

When X = [a, b] ⊂ R, this is precisely the extreme value theorem.

Theorem 14.7. If f : X → Y is a continuous bijection and X is compact, then f−1 : Y → X is
also continuous.
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Proof. By our characterization of continuity, we need to show that f sends open set to sets
(meaning pre-images of open sets under f−1 are open). Given V ⊆ X open, Vc ⊆ X is a
closed subset of a compact set, so it’s compact. By our main theorem, f (Vc) must also be
compact in X. Since f is a bijection, f (Vc) = f (V)c. So f (V)c is compact, which means
it’s closed. Thus f (V) is open, as desired. �

Definition 14.8. f : X → Y is uniformly continuous if ∀ε > 0, ∃δ > 0 s.t. ∀x, p ∈ X,
ρx(x, p) < δ =⇒ ρY( f (x), f (p)) < ε.

The crucial difference between uniform continuity and continuity is that continuity al-
lows for δ to be selected as a function of ε and p, whereas uniform continuity only allows
δ to be selected as a function of ε. As we’ll soon see, continuous functions may not permit
choices of δ which sufficiently restrict output across the entirety of their domains, meaning
uniform continuity is stronger than continuity.

Example 14.9. f : R+ → R+, f (x) = 1
x is continuous but not uniformly continuous.

To see why, take ε = 1
2 . Regardless of how small δ > 0 is selected, we can find

sufficiently large n ∈N such that | 1n −
1

n+1 | < δ but | f ( 1
n )− f ( 1

n+1)| = 1 > ε.

Theorem 14.10. If f : X → Y is continuous and X is compact, then f is in fact uniformly
continuous.

Proof. Fix ε > 0. Since f is continuous, for all p ∈ X, ∃δ(p) such that ρX(x, p) < δ(p) =⇒
ρY( f (x), f (p)) < ε/2 for x ∈ X. Let Vp = Nδ(p)/2(p). The Vp collectively cover X, so
they reduce to a finite subcover Vp1 , . . . , Vpn . Now let δ = 1

2 min(δ(p1), . . . , δ(pn)). Now
consider p, x with ρX(p, x) < δ. Then there’s a Vpi with ρX(p, pi) < δ(pi)/2. Since δ <
δ(pi)/2, by the triangle inequality we have δX(x, pi) < δ(pi). Then, by definition of δ(pi),
ρY( f (p), f (pi) < ε/2 and ρY( f (x), f (pi)) < ε/2. So, again by the triangle inequality,
dY( f (x), f (p)) < ε. Thus δ restricts the behavior of X on its entire domain, and f is
uniformly continuous. �

Theorem 14.11. If E ⊆ R is not compact, then
(a) ∃ f : E→ R which is continuous such that f (E) is not bounded.
(b) ∃ f : E→ R which is continuous and bounded, but which has no maximum.
(c) If E is also bounded, ∃ f : E→ R which is continuous but not uniformly continuous.

Finally, here’s a theorem we’ll see next time:

Theorem 14.12. If f : X → Y is continuous and E ⊆ X is connected, then f (E) is connected.

15. LECTURE 15 — MARCH 28, 2019

We’ll start with a theorem we saw last time, which we weren’t able to prove.

Theorem 15.1. If f : X → Y is continuous and E ⊆ X is connected, then f (E) is connected.
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Proof. Suppose f (E) is not connected, meaning it can be witnessed as the union of non-
empty, separated sets f (E) = A∪ B. Now consider G = E∩ f−1(A) and H = E∩ f−1(B).
These sets are disjoint because pre-images preserve disjointness (i.e. there could not be an
x ∈ E with f (x) ∈ A and f (x) ∈ B). It remains to show that G ∩ H = ∅ and G ∩ H = ∅.
First, we claim f (G) ⊆ A. Any x ∈ G appears as the limit of a sequence in G xn. By
continuity of f , f (xn) → f (x), so f (x) is the limit of a sequence in A, so it’s in A. So
G ∩ H = ∅, since f (G) ⊆ A, f (H) ⊆ B, and A ∩ B = ∅. By symmetry, G ∩ H = ∅, so
we’ve demonstrated that E is disconnected, producing contradiction. �

”Did I just prove a homework problem? Being a mathematician is less dangerous than
being a surgeon or a pilot, but there are some occupational risks.” - Dr. Auroux.

Given this theorem, we get the Intermediate Value theorem more or less for free.

Theorem 15.2 (Intermediate Value Theorem). If f : [a, b] → R is continuous, then ∀c ∈ R

such that f (a) < c < f (b), c lies in the image of f .

Proof. We’ve seen that E ⊆ R is connected if and only if x, y ∈ E means z ∈ E for any
x < y < z. So [a, b] is connected, and by the previous theorem, f ([a, b]) is connected. By
this characterization of connected sets, the result holds. �

In previous classes you may have heard or said something along the lines of ’as x goes
to infinity, f (x) goes to infinity’. We don’t currently have the tools to formalize this idea,
because infinity can’t live in a metric space. By further developing limits of functions and
defining neighborhoods in the extended reals, we can handle these cases.

We’ve seen that limx→p f (x) = q if and only if ∀ε > 0, ∃δ > 0 such that 0 < |x− p| < δ
implies | f (x)− q| < ε. Equivalently, for every sequence xn converging to p with xn 6= p,
f (xn) → q. This is also equivalent to saying that for every neighborhood U of q, there
exists a neighborhood V of p with x ∈ V =⇒ f (x) ∈ U.

In the extended real number system R ∪ {−∞, ∞}, declare neighborhoods of ∞ to be
intervals (c, ∞) (and neighborhoods of −∞ to be intervals (−∞,−c)).

Example 15.3. With the neighborhood-based definition of functional limits,
limx→∞ f (x) = ∞ means that for any C > 0 (we’re taking the neighborhood (C, ∞)),
there exists A > 0 (we’re taking the neighborhood (A, ∞)) such that f (x) > C when
x > A. Equivalently, for any xn → ∞, f (xn)→ ∞.

Now we’ll consider one-sided limits, which you also may have seen previously in a
calculus class.

Definition 15.4. limp+ f (x) = q ⇐⇒ ∀ε > 0 ∃δ > 0 such that p < x < p + δ means
| f (x)− q| < ε. Equivalently, for any xn → p with xn > p, f (xn)→ q.

The definition of limx→p− f (x) is analogous. When these limits exist, Rudin writes them
as f (p+) and f (p−), respectively.

Proposition 15.5. limx→p f (x) = q ⇐⇒ f (p−) = f (p+) = q.

Proof sketch. The forward direction is immediate, and the backward direction involves tak-
ing the minimum of the δ’s you get from the definitions of f (p−) and f (p+). �
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It’s important to note that it’s possible that f (p−) = f (p+) = q but f (p) 6= q.

Definition 15.6. We say f : R → R has a simple discontinuity at p if it is not continuous
at p but f (p−) and f (p+) exist. This is also called a discontinuity of first kind, while all
other discontinuities are called discontinuities of the second kind.

Example 15.7. f (x) =

{
0 x < 0
1 x ≥ 0

has a simple discontinuity at 0.

f (x) =

{
1 x ∈ Q

0 else
has discontinuities of the second kind at every point, as

neither of the one-sided limits exist.

Definition 15.8. For E ⊆ R, f : E → R is monotonically increasing if x < y =⇒ f (x) ≤
f (y), and monotonically decreasing if x < y =⇒ f (x) ≥ (y). A monotonic function is
either monotonically increasing or monotonically decreasing.

Theorem 15.9. If f is monotonically increasing on (a, b), then ∀x ∈ (a, b), f (x−) and f (x+)
exist. In fact, supt∈(a,x) f (t) = f (x−) ≤ f (x) ≤ f (x+) = inft∈(x,b) f (t).

Proof. { f (t)|t ∈ (a, x)} ⊆ R is non-empty and bounded above by f (x), so it has a least
upper bound A. We’d like to show f (x−) = limt→x− f (t) = A. Fix ε > 0. Since A − ε
is not a least upper bound for { f (t)|t ∈ (a, x)}, ∃δ > 0 such that x − δ ∈ (a, x) and
f (x− δ) > A− ε. Now, for t ∈ (x− δ, x), A− ε < f (x− δ) ≤ f (t) ≤ A. So | f (t)− A| < ε
and limt→x− f (t) = A. By an almost identical argument, the statement for one-sided limits
from the right holds. �

So the discontinuities of monotonic functions are fairly reasonable.

Corollary 15.10. A monotonic function has at most countably many discontinuities.

Proof. If f is monotonically increasing, then a discontinuity at x means f (x−) < f (x+).
There exists a rational in ( f (x−), f (x+)), and there are only countably many rationals, so
there can only be countably many of these jumps. Likewise if f is monotonically decreas-
ing. �

One example of a monotonic function which realizes infinitely many discontinuities is
the function dxe, which outputs the smallest integer greater than its input and is discon-
tinuous at each integer.

16. LECTURE 16 — APRIL 2, 2019

Definition 16.1. The derivative of f : [a, b]→ R at x ∈ [a, b] is limt→x
f (t)− f (x)

t−x , if it exists.

When the above value exists, we write it as f ′(x), and say that the function f is differ-
entiable at x.

Theorem 16.2. If f is differentiable at x, then it is continuous at x.
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Proof. To show that limt→x f (t) = f (x) amounts to proving that limt→x f (t)− f (x) = 0.
We have

lim
t→x

f (t)− f (x) = lim
t→x

f (t)− f (x)
t− x

(t− x)

= f ′(x) lim
t→x

(t− x)

= f ′(x) · 0
= 0

�

Theorem 16.3. If f , g : [a, b] → R are differentiable at x, then so are f + g, f g, and (provided
g(x) 6= 0), f /g. Moreover,

1. ( f + g)′(x) = f ′(x) + g′(x)
2. ( f g)′(x) = f ′(x)g(x) + g′(x) f (x)
3. ( f /g)′(x) = g(x) f ′(x)− f (x)g′(x)

g(x)2

Proof. The first claim follows from the fact that the limit of a sum is the sum of limits -
formally, lim(sn + tn) = lim sn + lim tn, where sn = f (t)− f (x)

t−x and tn = g(t)−g(x)
t−x .

To prove the second claim, we creatively add zero.

( f g)′(x) = lim
t→x

f (t)g(t)− f (x)g(x)
t− x

= lim
t→x

f (t)g(t)− f (t)g(x) + f (t)g(x)− f (x)g(x)
t− x

= lim
t→x

f (t)
g(t)− g(x)

t− x
+ g(x)

f (t)− f (x)
t− x

= f (x)g′(x) + g(x) f ′(x)

Note that we used continuity of f - which followed from its differentiability - to conclude
that limt→x f (t) = f (x). We won’t prove the claim for f /g here. �

Theorem 16.4 (Chain rule). Suppose f is continuous on [a, b] and differentiable at x ∈ [a, b], and
g is defined on an interval containing f ([a, b]) and differentiable at f (x). Then h(t) = g ◦ f (t) is
defined on [a, b] and differentiable at x, with h′(x) = g′( f (x)) f ′(x).

Proof. Write f (t)− f (x) = (t− x)( f ′(x)+ u(t)) for u(t) an error term with limit 0 as t→ x.
Likewise, taking y = f (x) for ease of notation, write g(s)− g(y) = (s− y)(g′(y) + v(s)),
for v(s) an error determ with limit 0 as s→ y. Then

g( f (t))− g( f (x)) = ( f (t)− f (x))(g′( f (x)) + v( f (t)))

g( f (t))− g( f (x)) = (t− x)( f ′(x) + u(t))(g′( f (x)) + v( f (t)))
g( f (t))− g( f (x))

t− x
= ( f ′(x) + u(t))(g′( f (x)) + v( f (t)))

Taking the limit as t→ x proves the claim. �
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Example 16.5. Consider f (x) =

{
x sin( 1

x ) x 6= 0
0 x = 0

. f is continuous at 0, as | f (x)−

f (0)| = |x sin( 1
x )| ≤ |x|, which approaches 0 as x approaches 0. It’s easier to see that

it’s continuous on R \ {0}, using the fact that products, quotients, and compositions
of continuous functions are continuous. One can also see that f is differentiable on

R \ {0}, but it fails to be differentiable at 0, as f (x)− f (0)
x−0 =

x sin( 1
x )

x = sin( 1
x ), which

does not have a limit as x → 0.

The following theorems will be quite useful for the remainder of the course. First, a
familiar definition.

Definition 16.6. A function f has a local maximum at p if ∃δ > 0 such that |x − p| <
δ =⇒ f (x) ≤ f (p).

Theorem 16.7. If f : [a, b] → R has a local maximum at x ∈ (a, b) and is differentiable at x,
then f ′(x) = 0.

Proof. Consider approaching x from the right and left side (note that we’re making use
of the fact that x is in the interior of f ’s domain). By assumption, limt→x

f (t)− f (x)
t−x exists.

When t − x > 0, then f (t)− f (x)
t−x ≤ 0, as f (t) − f (x) ≤ 0. Similarly, when t − x < 0,

f (t)− f (x)
t−x ≥ 0. It follows that the limit must be zero. �

Theorem 16.8 (Mean Value). Let f , g : [a, b] → R be differentiable on (a, b). Then ∃x ∈ (a, b)
such that ( f (b)− f (a))g′(x) = f ′(x)(g(b)− g(a)).

Proof. Let h(t) = ( f (b)− f (a))g(t)− f (t)(g(b)− g(a)). Then h is continuous on [a, b] and
differentiable on (a, b). The problem reduces to proving that h′(t) = 0 for some t ∈ (a, b).
Note that

h(a) = f (b)g(a)− f (a)g(b) = h(b)
If h is constant, then its derivative is everywhere zero, and the claim follows. If h is not
constant, then - by the extreme value theorem - it reaches a maximum or minimum at an
interior point t. By the previous theorem, h′(t) = 0, proving the claim. �

Corollary 16.9. The previous statement of the Mean Value theorem may appear foreign, but it
implies the more familiar one. In particular, taking g to be the identity proves the existence of an
x ∈ (a, b) for which f (b)− f (a) = (b− a) f ′(x).

Theorem 16.10. Let f be a real-valued function differentiable on (a, b).
1. If f ′(x) ≥ 0 ∀x ∈ (a, b), then f is monotonically increasing on (a, b).
2. If f ′(x) ≤ 0 ∀x ∈ (a, b), then f is monotonically decreasing on (a, b).
3. If f ′(x) = 0 ∀x ∈ (a, b), then f is constant on (a, b).

Proof. Suppose we are in case 1, and fix x, y ∈ (a, b) with x < y. Then, by the Mean
Value theorem, f (y) − f (x) = f ′(t)(y − x). The right hand side is the product of two
nonnegative numbers, so it’s nonnegative. Then f (y) − f (x) ≥ 0 and f (y) ≥ f (x), as
desired. The remaining cases follow similarly. �
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17. LECTURE 17 — APRIL 4, 2019

Last time we looked at the Mean value theorem, which states that the mean value of a
function’s rate of change is achieves somewhere. In particular, for f : [a, b] → R, there
exists an x ∈ (a, b) such that f ′(x) = f (b)− f (a)

b−a . The generalization is that for f , g : [a, b]→
R, there exists an x ∈ (a, b) with f (b)− f (a)

g(b)−g(a) =
f ′(x)
g′(x) .

Theorem 17.1 (L’Hopital’s rule). Let f , g : (a, b) → R be differentiable, g′(x) 6= 0 ∀x, and
suppose limx→a

f ′(x)
g′(x) = A, for A ∈ R∪ {±∞}. If either

(1) f (x), g(x)→ 0 as x→ a, or
(2) g(x)→ ∞ as x → a

then f (x)
g(x) → A as x → a. Likewise for b.

Proof. To show f (x)
g(x) → A as x → a+, we show

(A) ∀q ∈ R s.t. A < q, ∃c ∈ (a, b) s.t. x ∈ (a, c) =⇒ f (x)
g(x) ≤ q.

(B) ∀h ∈ R s.t. A > h, ∃c′ ∈ (a, b) s.t. x ∈ (a, c′) =⇒ f (x)
g(x) ≥ q.

First suppose we obey (1). Then, because f ′(x)
g′(x) → A as x → a, ∃c ∈ (a, b) s.t. x ∈

(a, b) =⇒ f ′(x)
g′(x) < q. Then for a < y < x < c, the generalized MVT provides the existence

of t ∈ (y, x) such that f (x)− f (y)
g(x)−g(y) = f ′(t)

g′(t) < q. Keeping x fixed, as y → a, f (y) → 0 and

g(y)→ 0. Then lim f (x)− f (y)
g(x)−g(y) =

f (x)
g(x) ≤ q. So we’ve shown (A).

If we obey (2), then again ∃c with x ∈ (a, b) =⇒ f ′(x)
g′(x) < q. Again by the generalized

MVT, a < x < c =⇒ ∃t ∈ (x, c) s.t. f (x)− f (c)
g(x)−g(c) = f ′(t)

g′(t) < q. So, as x → a+, because

g(x)→ ∞ and g(c) is a constant, f (c)
g(x)−g(c) → 0 and g(x)−g(c)

g(x) → 1. So

f (x)
g(x)

= (
f (x)− f (c)
g(x)− g(c)

+
f (c)

g(x)− g(c)
)

g(x)− g(c)
g(x)

Where we’ve shown that the rightmost term approaches 1, the middle term approaches
0, and the leftmost term is bounded by q. If we had done this with some q′ < q, then we
could have concluded that ∃c′ ∈ (a, c) s.t. a < x < c′ =⇒ f (x)

g(x) < q. So we’ve proven (A)
in both cases, and (B) follows similarly. �

Theorem 17.2 (Taylor’s theorem). For f : [a, b]→ R and n ≥ 1, suppose f (n−1) is continuous
on [a, b] and f (n) exists on (a, b). Let α, β be distinct in [a, b]. The (n− 1)th Taylor polynomial of
f at α is

P(t) = f (α) + f ′(α)(t− α) +
f ′′(α)

2
(t− α)2 + · · ·+ f (n−1)

(n− 1)!
(t− α)n−1

And there exists x ∈ (α, β) with f (β) = P(β) + f (n)(x)
n! (β− α)n.
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Proof. Let M be the constant such that f (β) = P(β) + M(β− α)n, and let g(t) = f (t)−
P(t)−M(t− α)n. Then g(n)(t) = f (n)(t)− n!M. We’d like to show ∃x with g(n)(x) = 0,

which would imply M = f (n)(x)
n! . Suppose, without loss of generality, that α < β. Since P

has the same derivative as f , g(α) and the first n− 1 derivatives of g at α are zero. We also
have that g(β) = 0. Then, by MVT, g′(x1) = 0 for some x1 ∈ (α, β). Again using the MVT
(with g′(α) = g′(x1) = 0), we have that g′′(x2) = 0 for some x2 ∈ (α, x1). Proceeding in
this way, we arrive at the existence of an xn with g(n)(xn) = 0. �

This statement of Taylor’s theorem is nice, because the f (n)(x)
n! (β− α)n allows us to bound

our errors, by considering the x ∈ (α, β) with greatest nth derivative. So we’re done with
derivatives, and we’re off to Riemann integrals.

Definition 17.3. A partition P of [a, b] ⊆ R is a finite set x0, . . . , xn ∈ R such that a = x0 ≤
x1 ≤ · · · ≤ xn = b. We write ∆xi = xi − xi−1, i = 1, . . . , n.

Given a bounded function f : [a, b] → R and a partition P = {x0, . . . , xn}, let Mi =
sup{ f (x), xi−1 ≤ x ≤ xi} and mi = inf{ f (x), xi−1 ≤ x ≤ xi}. Set U(P, f ) = ∑n

i=1 Mi∆xi

and L(P, f ) = ∑n
i=1 mi∆xi. Then the upper Riemann integral is

∫ b
a f dx = inf{U(P, f ) :

P a partition of[a, b]} and the lower Riemann integral is
∫ b

a = sup{L(P, f ) : P a partition of[a, b]}.

Theorem 17.4. For any partition P, L(P, f ) ≤
∫ b

a f dx ≤
∫ b

a f dx ≤ U(P, f ).

Definition 17.5. f is Riemann integrable if
∫ b

a f dx =
∫ b

a f dx.

Remark 17.6. The upper and lower integrals always exist for bounded f .

18. LECTURE 18 — APRIL 9, 2019

Last time we talked about Riemann integrals, and decided to call a function Riemann-

integrable on [a,b] if supP L(P, f ) =
∫ b

a f dx =
∫ b

a f dx = infP U(P, f ). We then write these

quantities as
∫ b

a f (x)dx, and write f ∈ R to denote that f is integrable.
If f is bounded, then we’re guaranteed the existence of all lower and upper sums

L(P, f ) = ∑n
i mi∆xi, U(P, f ) = ∑n

i=1 Mi∆xi, as these quantities are bounded by m(b− a)
and M(b− a), respectively, where m ≤ f (x) ≤ M.

Definition 18.1. A refinement of the partition P = {x0, . . . , xn} is a partition P∗ = {x∗0 , . . . , x∗N}
with {x0, . . . , xn} ⊆ {x∗0 , . . . , x∗N}.

Proposition 18.2. For P∗ a refinement of P,

L(P, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P, f )

Proof sketch. L(P, f ) ≤ L(P∗, f ) because when [x∗i−1, x∗i ] ⊆ [xj−1, xj], m∗i ≥ mj. Likewise
for U(P∗, f ) ≤ U(P, f ). �
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Then, given any partition P1, P2, there exists a refinement of both P1 and P2, say P∗,
which cuts the interval whenever P1 or P2 do. By the above proposition, we arrive at

L(P1, f ) ≤ L(P∗, f ) ≤ U(P∗, f ) ≤ U(P2, f )

Taking the supremum over all P1, keeping P2 fixed, we arrive at∫ b

a
f dx = sup

P1

L(P1, f ) ≤ U(P2, f )

Now varying P2 taking the infimum, we conclude:∫ b

a
f dx ≤ inf

P2
U(P2, f ) =

∫ b

a
f dx

Theorem 18.3. •
∫ b

a f dx ≤
∫ b

a f dx
• f ∈ R if and only if ∀ε > 0, ∃ partition P with U(P, f )− L(P, f ) ≤ ε.

Proof. We’ve already proven the first claim. To show the second claim, first suppose f ∈ R.
By the definition of inf and sup, given any ε > 0, ∃P1, P2 such that L(P1, f ) ≥

∫ b
a f dx− ε/2

and U(P2, f ) ≤
∫ b

a f dx + ε/2. Taking P∗ to be a refinement of the Pi, we have U(P∗, f )−
L(P∗, f ) ≤ ε. Conversely, if ∀ε > 0 ∃P such that U(P, f )− L(P, f ) ≤ ε, then

∫
−
∫
≤ ε.

Since this holds for any ε,
∫
=
∫

. �

Remark 18.4. If U(P, f )− L(P, f ) ≤ ε, then ∀si, ti ∈ [xi−1, xi], ∑n
i=1 | f (si)− f (ti)|∆xi ≤ ε

(as this quantity is bounded by ∑(Mi − mi)∆xi = U(P, f )− L(P, f )). So, also assuming
f ∈ R, one can conlude

|
n

∑
i=1

f (si)∆xi −
∫ b

a
f (x)dx| ≤ ε

Theorem 18.5. If f is continuous on [a, b], then f ∈ R.

Proof. Fix ε. We’d like to build P such that U(P, f )− L(P, f ) ≤ ε. So we’d like to ensure
that Mi − mi ≤ ε

b−a . Since f is continuous on a compact set, it’s uniformly continuous.
Thus, there exists δ for which |x − y| < δ =⇒ | f (x)− f (y)| < ε

b−a ∀x, y ∈ [a, b]. Now
pick a partition P of [a, b] with N equal steps of width δxi =

b−a
N such that b−a

N < δ. For
any s, t ∈ [xi−1, xi], | f (s)− f (t)| < ε

b−a . So Mi −mi ≤ ε
b−a . Thus

U(P, F)− L(P, f ) =
n

∑
i=1

(Mi −mi)∆xi

≤ ε

b− a

N

∑
i=1

∆xi

= ε

�

Theorem 18.6. If f is monotonic on [a, b], it’s integrable.
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Proof. Without loss of generality, assume f is monotonically increasing. Fixing ε > 0, take
P such that all ∆xi are equal and are weakly less than ε

f (b)− f (a) . Because f is monotonic,
Mi = f (xi) and mi = f (xi−1). So L(P, f ) = ∑n

i=1 f (xi−1)∆xi =) f (x0) + · · ·+ f (xn−1))∆xi
and likewise U(P, f ) = ( f (x1 + · · ·+ f (xn))∆xi. Thus

U(P, f )− L(P, f ) = ( f (b)− f (a))∆xi ≤ ε

�

Theorem 18.7. If f is bounded on [a, b] and has finitely many discontinuities, then f is integrable.

Proof sketch. Take increasingly narrow intervals around the discontinuities, and integrate
the rest using the argument for continuous fucntions. �

Theorem 18.8. If f is integrable and bounded on [a, b], i.e. m ≤ f ≤ M, and ϕ is continuous on
[m, M], then ϕ ◦ f is integrable on [a, b].

Proof. See Rudin. �

Theorem 18.9. (a) If f1, f2 are integrable on [a, b], then f1 + f2 ∈ R and
∫ b

a ( f1 + f2)dx =∫ b
a f1dx +

∫ b
a f2dx. Likewise, ∀v ∈ R, c f is integrable with

∫ b
a (c f )dx = c

∫ b
a f dx.

(b) If f1(x) ≤ f2(x) are integrable on [a,b], then
∫ b

a f1dx ≤
∫ b

a f2dx.
(c) If f is integrable on [a, b] and a < c < b, then f is also integrable on [a, c] and [c, b], and∫ b

a
f dx =

∫ c

a
f dx +

∫ c

b
f dx

(d) If f is integrable and | f (x)| ≤ M on [a,b], then |
∫ b

a f dx| ≤ M(b− a)
(e) If f and g are integrable, then f g is integrable.
(f) If f is integrable, then | f | is as well, and |

∫
f dx| ≤

∫
| f |dx.

Proof. (a) Note that L( f1 + f2, P) ≤ L( f1, P) + L( f2, P). Observing the analogous result
for upper sums, the result holds.

�

19. LECTURE 19 — APRIL 11, 2019

Recall that f is integrable (which we write f ∈ R) if
∫

=
∫

or, equivalently, for any
ε > 0, there exists a partition P with U(P, f )− L(P, f ) < ε. Last time we saw that contin-
uous functions, piece-wise continuous functions with finitely many discontinuities, and
monotonic functions are integrable (on sets of the form [a, b]). We also saw that R is closed
under addition and multiplication, meaning sums and products of integrable functions
are integrable.

Today we’ll be talking about change of variables - sometimes called u-substitution in
calculus courses - and this appears as 6.17 and 6.19 in Rudin.

Theorem 19.1. Say f is integrable on [a, b] and ϕ is a strictly increasing function which surjects
from [A, B] to [a, b]. Assume ϕ′ ∈ R. Then g(y) = f (ϕ(y))ϕ′(y) on [A, B] is integrable, and
furthermore

∫ B
A g(y)dy =

∫ B
A f (ϕ(y))ϕ′(y)dy =

∫ b
a f (x)dx.
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Proof. To each partition P = {x0, . . . , xn} of [a, b] we can associate a partition Q = {y0, . . . , yn}
of [A, B] such that xi = ϕ(yi). Given such P, Q, let

mi( f ) = inf
x∈[xi−1,xi]

f (x) = inf
y∈[yi−1,yi]

f ◦ ϕ(y)

mi(ϕ′) = inf
y∈[yi−1,yi]

ϕ′(y)

min(mi( f )mi(ϕ′), mi( f )Mi(ϕ′)) ≤ mi(g) = inf
y∈[yi−1,yi]

g(y)

So L(P, f ) = ∑i mi( f )(xi − xi−1) = ∑i mi( f )ϕ′(y∗i )(yi − yi−1), by the Mean Value theorem
and ϕ(yi) = xi, ϕ(yi−1) = xi−1. Since φ′ is integrable, ∀ε > 0, ∃P, Q s.t. ∀y∗i ∈ [yi−1, yi],
∑i max(|ϕ′(y∗i )−mi(ϕ′)|, |Mi(ϕ′)− ϕ′(y∗i )|)∆yi ≤ ε. And

L(Q, G) = ∑
i

mi(g)∆yi

≥∑
i

min(mi( f )mi(ϕ′), mi( f )Mi(y′))∆yi

≥∑ mi( f )ϕ′(y∗i )∆yi −∑
i
|mi( f )|max(|ϕ′(y∗i )−mi(ϕ′)|, |Mi(ϕ′)− ϕ′(y∗i )|)∆yi

≥ L(P, f )− (max
i
|mi( f )|)ε

Since f is bounded - it’s a continuous function on a compact set - the last line is of the
form L(P, f )− cε for some constant c. So, taking sufficiently fine partitions, L(P, f ) can
be brought arbitrarily close to L(Q, g), meaning

∫ B
A g(y)dy = sup L(Q, g) ≥

∫ b
a f (x)dx.

Performing an almost identical procedure with upper sums, we have that
∫ B

A g(y)dy ≤∫ b
a f dx. We conclude that

∫ B
A g(y)dy =

∫ b
a f (x)dx, as desired. �

This is a pretty messy proof, but one of the crucial steps was applying the Mean Value
theorem to lower/upper sums of f in order to witness them as sums of scaled values of
ϕ′, rather than of f .

Theorem 19.2. Let f be integrable on [a, b] and define F(x) =
∫ b

a f (t)dt for x ∈ [a, b]. Then
F is continuous on [a, b] and if f is continuous at x, then F is differentiable at x with derivative
F′(x) = f (x).

Proof. Since f is integrable, it’s bounded, so say | f (t)| ≤ M for t ∈ [a, b]. Then for a ≤
x ≤ y ≤ b, |F(y)− F(x)| = |

∫ y
x f (t)dt| ≤ M|y− x|. So F is continuous, by taking δ = ε

M .
Now, assuming f is continuous at x, given ε > 0 select δ such that |t − x| < δ =⇒
| f (t)− f (x)| < ε. Then for s, t ∈ (x− ε, x + ε),

|F(t)− F(s)
t− s

− f (x)| = | 1
t− s

∫ t

s
( f (u)− f (x))du| ≤ ε

�

Theorem 19.3 (Fundamental Theorem of Calculus). If f is integrable on [a, b] and F is differ-
entiable on [a, b] with F′ = f , then

∫ b
a f (x)dx = F(b)− F(a).
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Proof. Given ε > 0, integrability of f implies the existence of a partition P of [a, b] with
U(P, f ) − L(P, f ) ≤ ε, and thus ∀x∗i ∈ [xi−1, xi], |∑i f (x∗i )∆xi −

∫ b
a f (x)dx| ≤ ε. By

the Mean Value theorem, ∃x∗i ∈ [xi−1, xi] with F(xi) − F(xi−1) = F′(x∗i )(xi − xi−1) =
f (x∗i )∆xi. So

F(b)− F(a) = ∑
i
(F(xi)− F(xi−1))

= ∑
i

f (x∗i )∆xi

Which is within ε of
∫ b

a f (x)dx for arbitrary ε. So it’s identically
∫ b

a f (x)dx. �

Theorem 19.4 (Integration by parts). Suppose F, G are differentiable on [a, b] and F′ = f , G′ =
g are integrable on [a, b]. Then

∫ b
a F(x)g(x)dx = F(b)G(b)− F(a)G(a)−

∫ b
a f (x)G(x)dx.

Proof. Let H(x) = F(g)G(x). Then H′ = f G + Fg by the product rule. Apply the Funda-
mental Theorem of Calculus! �

20. LECTURE 20 — APRIL 16, 2019

The goal is now to discuss sequences and series of functions. In order to define series of
functions, we need to be able to speak of sums of functions - which we’ll define pointwise
- so the codomains of our functions need to support an addition operation. For this reason,
we’ll restrict ourselves to real-valued functions.

Definition 20.1. A sequence fn : (E, d) → R converges pointwise to f : E → R if ∀x ∈ E,
fn(x)→ f (x).

It turns out that sequences of continuous functions do not in general converge to contin-
uous functions, and sequences of differentiable functions do not converge to differentiable
functions either. For this reason, we’ll be considering stronger forms of convergence, like
uniform convergence.

Definition 20.2. A series ∑n
n=0 fn(x) converges pointwise if ∀x ∈ E, ∑ fn(x) converges

(meaning the sequence of partial sums converges).

Example 20.3. Let fn = x2

(1+x2)n : R → R. The fn are all continuous. Now consider
f (x) = ∑∞

n=0 fn(x). We have f (0) = ∑ 0 = 0, as fn(0) = 0 ∀n ∈ N. For x 6= 0,
f (x) = x2 ∑∞

n=0(
1

1+x2 )
n. That’s a convergent geometric series, since x 6= 0, so

f (x) = x2 1
1− 1

1+x2

= x2 1
x2

1+x2

= 1 + x2

Then f (0+) = f (0−) = 1 6= 0 = f (0), so f isn’t continuous.
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Example 20.4. Let fn = sin(nx)√
n . Note that | fn(x)| ≤ 1√

n → 0. But f ′n(x) =
√

n cos(nx) doesn’t converge at all.

Definition 20.5. A sequence of functions { fn} converges uniformly on E to a function f if
∀ε > 0, ∃N ∈N such that ∀n ≥ N, ∀x ∈ E, | fn(x)− f (x)| < ε.

Note that this definition differs from pointwise convergence in that we’re not allowed
to tailor N for each x ∈ E.

Theorem 20.6. Suppose limn→∞ fn(x) = f (x) ∀x ∈ E, meaning there is pointwise convergence.
Let Mn = supx∈E | fn(x)− f (x)|. Then fn → f uniformly ⇐⇒ Mn → 0.

Theorem 20.7. fn converges uniformly on E if and only if ∀ε > 0, ∃N such that ∀m, n ≥ N,
∀x ∈ E, | fn(x)− fm(x)| ≤ ε.

Proof. First suppose fn converges uniformly to some f . Fixing ε > 0, ∃N s.t. ∀x ∈ E, ∀n ≥
N, | fn(x)− f (x)| ≤ ε/2. Then for m, n ≥ N, by the triangle inequality, | fn(x)− fm(x)| ≤
ε.

Now suppose that { fn} is uniformly Cauchy. Then ∀x ∈ E, { fn(x)} is Cauchy in
R, C, Rk, meaning it converges to some limit f (x). Then fn(x) → f (x) pointwise. And,
given any ε, ∃N s.t. ∀m, n ≥ N, ∀x ∈ E, | fn(x)− fm(x)| ≤ ε. Taking the limit as m tends
to ∞, for fixed x, n, we have that | fn(x)− f (x)| ≤ ε ∀n ≥ N, ∀x ∈ E. �

Definition 20.8. A series ∑ fn converges uniformly on E to its sum s(x) = ∑ fn(x) if the
sequence of partial sums sn(x) = ∑n

k=0 fk(x) converges to s(x) uniformly.

Remark 20.9. If ∑ fn converges uniformly, then supx∈E | fn(x)| → 0 as n → ∞. This is a
consequence of the Cauchy criterion when m = n + 1.

It’s important to keep in mind that the above condition is necessary but not sufficient
(and not even sufficient if ∑ fn is known to converge pointwise!). Recall the series ∑ 1

n ,
and observe the series ∑ x2

(1+x2)n - it converges pointwise and it’s uniformly bounded, but
it doesn’t converge uniformly.

Theorem 20.10. If | fn(x)| ≤ Mn ∀x ∈ E and if ∑ Mn converges, then ∑ fn converges uniformly
on E.

Proof. Given ε > 0, we’d like to construct N with m ≥ n ≥ N implies |sm(x)− sn(x)| =
|∑m

k=n+1 fk(x)| ≤ ε. We know that |∑m
k=n+1 fk(x)| ≤ ∑m

k=n+1 | fk(x)| ≤ ∑m
k=n+1 Mk. And

the rightmost term can be made arbitrarily small for sufficiently large n, by the Cauchy
criterion on convergence of ∑ Mn. �

21. LECTURE 21 — APRIL 18, 2019

Last time we saw that uniform convergence of a sequence of functions fn : E → R to
the function f : E → R meant that ∀ε > 0, ∃N ∈ N s.t. ∀n ≥ N, ∀x ∈ E, | fn(x)− f (x)| <
ε.Equivalently, supx∈E | fn(x) − f (x)| = Mn → 0. In words, it means that we can be
guaranteed that eventually all outputs of the fn are as close as desired to f , rather than
needing to tailor the waiting time for each point in the domain.
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Theorem 21.1. Suppose fn → f uniformly and limt→x fn(t) = An. Then the sequence An
converges and

lim
n→∞

(lim
t→x

fn(t)) = lim
n→∞

An = lim
t→x

f (t) = lim
t→x

( lim
n→∞

fn(t))

Corollary 21.2. The uniformly limit of a sequence of continuous functions is itself a continuous
function.

Proof. Apply the previous theorem with An = fn(x). By definition, limn→∞ An = f (x), so
limt→x f (t) = limn→∞ fn(x) = f (x). Thus f is continuous. �

Theorem 21.3. Let fn : [a, b] → R be integrable, and assume fn → f uniformly on [a, b]. Then
f is integrable and

∫ b
a f (x)dx = limn→∞

∫ b
a fn(x)dx.

Proof. Let Mn = supx∈[a,b] | fn(x) − f (x)|. By uniform convergence, Mn → 0. For any
x ∈ [a, b], we have fn(x)−Mn ≤ f (x) ≤ fn(x) + Mn. Then∫ b

a
fn(x)dx−Mn(b− a) ≤

∫ b

a
f (x)dx ≤

∫ b

a
f (x)dx ≤

∫ b

a
fn(x)dx + Mn(b− a)

Thus∫ b

a
f (x)dx−

∫ b

a
f (x)dx ≤ (

∫ b

a
fn(x)dx + Mn(b− a))− (

∫ b

a
fn(x)dx−Mn(b− a))

= 2Mn(b− a)
→ 0

Meaning f is integrable. We also have |
∫ b

a f (x)dx−
∫ b

a fn(x)dx| ≤ Mn(b− a)→ 0, so the
integrals indeed coincide. �

We now turn our focus to the relationship between convergence of sequences of func-
tions and differentiation. An important observation is that even uniform convergence
does not imply that the limit of the derivatives is the derivative of the limit.

Example 21.4. Consider fn(x) = 1√
n sin(nx). fn(x) → 0 but f ′n(x) =

√
n cos(nx),

which does not converge to the derivative of the zero function.

Theorem 21.5. Suppose fn are differentiable on [a, b] and fn(x0) converges for some x0 ∈ [a, b].
Suppose also that the f ′n converge uniformly on [a, b]. Then the fn converge uniformly on [a, b] to
a limit f , and f is differentiable with f ′(x) = limn→∞ f ′n(x).

Definition 21.6. Let C(X) denote the space of bounded, continuous functions from a
metric space X to R. For f ∈ C(X), let || f || = supx∈X | f (x)|. The distance function
ρ( f , g) = || f − g|| then turns C(x) into a metric space, as

(i) || f − g|| = 0 ⇐⇒ sup | f (x)− g(x)| = 0 ⇐⇒ f (x) = g(x) ∀x ∈ X
(ii) || f − g|| = sup | f (x)− g(x)| = sup |g(x)− f (x)| = ||g− f ||
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(iii)

|| f − h|| = sup
x∈X
| f (x)− h(x)|

≤ sup
x∈X

(| f (x)− g(x)|+ |g(x)− h(x)|)

≤ || f − g||+ ||g− h||

Theorem 21.7. C(X) is complete.

Proof. Let fn be a Cauchy sequence in C(X). Then for ∀ε > 0, ∃N s.t. ∀m, n ≥ N, || f (n)−
f (m)|| < ε. Because of our choice of metric, this means that the fn are uniformly Cauchy.
Because R is complete, the fn(x) thus converge pointwise to a value for each x ∈ X,
Because the convergence is uniform, the limit is itself continuous. �

22. LECTURE 22 — APRIL 23, 2019

:(

23. LECTURE 23 — APRIL 25, 2019

Let’s return to functions defined by power series, f (x) = ∑∞
n=0 cnxn. We’ve seen that an

important quantity here is the radius of convergence R = 1
lim sup |cn|1/n , which lives in the

extended reals. The root test told us that the series converges (absolutely) for |x| < R and
diverges for |x| > R. Now that we have the tools to think about series of functions, we
can generalize our results.

Theorem 23.1. Suppose ∑∞
n=0 cnxn converges for |x| < R, and define f (x) = ∑∞

n=0 cnxn on
(−R, R). Then

1) The series converges uniformly on [−R + ε, R− ε] ∀ε > 0.
2) f is differentiable in (−R, R), meaning it is also continuous.
3) f ′(x) = ∑∞

n=1 ncnxn−1.

Proof. We’ve seen that in the series ∑ gn, where gn(x) = cnxn, if gn is bounded by Mn and
∑ Mn converges, then ∑ gn converges uniformly. We’d then like to show that supx∈E | f (x)−
fn(x)| = supx∈E |∑

∞
k=n+1 ckxk| → 0.

Using this criterion and the fact that, for |x| ≤ R− ε, we have that |cnxn| ≤ |cn|(R− ε)n,
take Mn = |cn|(R− ε)n. Then lim sup M1/n

n = lim sup |cn|1/n(R− ε) = (R− ε) lim sup |c1/n
n .

Since R− ε < R, and lim sup c1/n
n = 1

R , this quantity comes out to less than one. By the
root test, ∑ Mn converges.

Now, given that fn = ∑n
k=0 ckxk → f uniformly on [−R + ε, R− ε] for all ε, f is contin-

uous on [−R + ε, R− ε] for all ε. So in fact it’s continuous on (−R, R). Finally, we’ve seen
that if f ′n converges uniformly to a limit, then f is differentiable and f ′(x) = limn→∞ f ′n(x).
Now, f ′n = ∑n

k=1 kckxk−1 are the partial sums of the power series h(x) = ∑∞
k=1 kckxk−1.

Note that lim sup |kck|1/k = lim sup |ck|1/k, because k
√

k → 1. So the radius of conver-
gence of h is the same as for f - they converge pointwise on (−R, R) and uniformly on
[−R + ε, R − ε]. So over [−R + ε, R − ε], f ′n → h uniformly. Then, by Theorem 7.17
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in Rudin, since f is differentiable and f ′ = h on [−R + ε, R − ε] for any ε, f ′ − h on
(−R, R). �

Corollary 23.2. For f infinitely differentiable on (−R, R) - often called smooth - applying the
theorem k times shows f (k)(x) = ∑∞

n=k n(n − 1) . . . (n − k + 1)cnxn−k. In particular, ck =
1
k! f (k)(0).

So a given smooth function f is given by a power series near 0 if and only if its Taylor
series at 0 converges and equals f . To see that the last condition is not trivial, observe the
following example.

Example 23.3. Consider f (x) =

{
e−1/x2

x 6= 0
0 x = 0

. One can check that f is smooth,

meaning it has derivatives of all orders, but f (n)(0) = 0 ∀n. So the Taylor series at 0
converges, but to the zero function rather than f .

There are several ways to define the exponential function. The first, which is not so
pretty, is to define the real number e as e = ∑∞

n=0
1
n! ≈ 2.718, then define en for integral n in

the natural way, define ep/q as (ep)1/q, and define ex for x irrational as sup{ep/q : p
q < x}.

The second, much nicer way is to define the exponential function as exp(x) = ∑∞
n=1

xn

n! .
Its radius of converge is ∞, since n! > (n

2 )
n
2 , which implies (n!)1/n → ∞. So this function

is well defined for all x ∈ R (and, as it happens, all x ∈ C). It’s continuous, and in fact
differentiable, and we have

exp(x) exp(y) = (
∞

∑
k=0

xk

k!
)(

∞

∑
m=0

ym

m!
)

=
∞

∑
n=0

(
n

∑
k=0

xk

k!
yn−k

(n− k)!
)

=
∞

∑
n=0

1
n!
(

n

∑
k=0

(
n
k

)
xkyn−k)

=
∞

∑
n=0

(x + y)n

n!

= exp(x + y)

As a special case, exp(x) exp(−x) = exp(0) = 1. Since exp(x) > 0 for x ≥ 0, it
follows that exp(x) > 0 for x < 0 as well (otherwise exp(x) exp(−x) < 0). And since
exp′ = exp > 0, the function is strictly increasing. Since exp(1) = e, the result also shows
that exp(n) = exp(1 + · · ·+ 1) = exp(1)n = en.

Since exp is a strictly increasing function R → R+, it has an inverse log : R+ → R

defined by the property that exp(log(y)) = y ∀y > 0 and log(exp(x)) = x ∀x ∈ R. We
get for free that log is also strictly increasing. We also have that limx→0 log(x) = −∞, and
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the chain rules gives us

log(exp x) = x

log′(exp x) exp′ x = 1

log′(exp x) =
1

exp x

log′(y) =
1
y

By our results for the exponential, we also have that log(uv) = log u+ log v and log(1) =
0, which implies log( 1

u ) = − log u. Finally, we define the trigonometric functions to be

cos(x) =
exp(ix) + exp(ix)

2

sin(x) =
exp(ix)− exp(−ix)

2i

where i ∈ C such that i2 = 1. You can check that cos′(x) = − sin(x) and sin′(x) = cos(x).

24. LECTURE 24 — APRIL 30, 2019

Today we’ll be talking about something slightly more applied than most of what we’ve
looked at in the course - Fourier series.

Definition 24.1. A trigonometric polynomial is a finite sum of the form f (x) = a0 +

∑N
n=1 an cos(nx) + bn sin(nx). Trigonometric polynomials are 2π-periodic and infinitely

differentiable (or smooth). A trigonometric series is a series of the form a0 +∑N
n=1 an cos(nx)+

bn sin(nx).

Recall from last time that eix = cos x + i sin x. Then complex generalizations of these
definitions are, respectively,

f (x) =
N

∑
n=−N

cneinx

and
∞

∑
n=−∞

cneinx.

Though these produce complex outputs in general, they are real-valued if cn = c−n for
all n. We’ll be working with the complex forms of trigonometric polynomials/series, as
they’re a bit easier to handle.
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Our first result is that for f (x) = ∑N
−N cneinx and m ∈ {−N, . . . , N}, then

1
2π

∫ 2π

0
f (x)e−imxdx =

1
2π

∫ 2π

0

N

∑
−N

cnei(n−m)xdx

=
1

2π

N

∑
n=−N

cn

∫ 2π

0
ei(n−m)xdx

= cm

So the coefficients of such a trigonometric polynomial can be detected by performing ap-
propriate integrals. Motivated by the result, we make the following definitions.

Definition 24.2. The mth Fourier coefficient of f , assumed integrable on [0, 2π], is

cm( f ) =
1

2π

∫ 2π

0
f (x)e−imxdx

The Fourier sum of f is

sN( f )(x) =
N

∑
−N

cn( f )einx

We also have

Definition 24.3. A sequence {φn} of complex-valued functiosn on [a, b] is an orthogonal system

of functions if
∫ b

a φn(x)φm(x)dx = 0 whenever n 6= m. It is an orthonormal system if fur-

thermore
∫ b

a |φn(x)|2dx = 1 for all n.

Example 24.4. Consider { 1√
2π

einx}n∈Z on [0, 2π] (or [−π, π]). This forms an or-
thonormal system because∫ 2π

0
φn(x)φm(x) =

1
2π

∫ 2π

0
einxe−imxdx

=

{
1 m = n
0 m 6= n

Theorem 24.5. Let {φn} be an orthonormal system on [a, b], and consider the Nth Fourier sum
of f - sN(x) = ∑N

n=1 cnφn(x). Then for any tN(x) = ∑N
n=1 dnφn(x),∫ b

a
| f − tN|2dx ≥

∫ b

a
| f − sN|2dx

with equality if and only if cn = dn for all n.
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Proof. First some intermediate results:∫ b

a
f tndx =

N

∑
n=1

dn

∫ b

a
f φndx

=
∫ N

n=1
dncn

And ∫ b

a
|tN|2dx =

∫ b

a
(

N

∑
n=1

dnφn)(
N

∑
m=1

dmφm)dx

=
∫ b

a
φnφn

=

{
0 m 6= n
1 m = n

Note that the second equality used the fact that only terms in which m = n contribute to
the sum. Returning to the original problem, we have∫ b

a
| f − tN|2dx =

∫ b

a
| f |2 − f tN − f tn + |tN|2dx

=
∫ b

a
| f |2dx−

N

∑
n=1

cndn −
N

∑
n=1

cndn +
N

∑
n=1
|dn|2

=
∫ b

a
| f |2dx−

N

∑
n=1
|cn|2 +

N

∑
n=1
|cn − dn|2

The first two terms are irrespective of tN and the second is minimized when cn = dn,
proving the claim. �

In words, what we’ve shown is that sN is the best approximation to f in the least-squares
sense.

Corollary 24.6. ∑∞
n=1 |cn|2 ≤

∫ b
a | f (x)|2dx, meaning the left hand side converges. In particular,

cn → 0 as n→ ∞.

For the remainder of the class, we’ll state some important theorems which we don’t
have time to prove.

Theorem 24.7. If for given x, ∃δ > 0, ∃M > 0 s.t. | f (x + t)− f (x)| ≤ M|t| for |t| < δ, then
limN→∞ sN( f )(x) = f (x).

In words, the above conditions - which are stronger that continuity but weaker than
differentiability - suffice to guarantee that the Fourier sums converge pointwise.

Theorem 24.8 (Stone-Weierstrass). If f is continuous and 2π-periodic, then f is the uniform
limit of a sequence of trigonometric polynomials.

Theorem 24.9 (Parseval). If f is integrable and 2π-periodic, with Fourier coefficients cn and
partial sums sN, then
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• limN→∞
1

2π

∫ 2π
0 | f (x)− sN(x)|2dx = 0

• ∑ |cn|2 = 1
2π

∫ 2π
0 | f (x)|2dx

That’s all - congratulations on having (almost) completed Math 112!

25. REVIEW SECTION — MAY 7, 2019

The final will take place the coming Monday, May 13, from 9am-12pm in Emerson 210.
You’re allowed to bring a copy of Rudin. There’s lots of space on the test for scratch
work, so there shouldn’t be a need to bring scratch paper. The format of the final is ap-
proximately C times the midterm, for 1 < C < 2. Expect a similar mix of concrete and
abstract material as in the midterm, and keep in mind that the standard of detail for proof
is slightly relaxed from that expected on homework, given the time limitation. It is cumu-
lative, and will cover the semester’s content more or less uniformly.

Chapter 1
We learned about fields, which are sets equipped with operations of addition and mul-

tiplication satisfying some properties. Examples were Q, R, and C. Q and R are addi-
tionally ordered fields, and R is made special by the least upper bound property, which
states that non-empty sets with upper bounds have least upper bounds. We learned that
the rationals (and irrationals) are dense in R, and that R is complete, meaning its Cauchy
sequences converge.

Chapter 2
We talked about unions and intersections of sets, what functions are, and the difference

between finite, countable, and uncountable sets. Countable sets are the smallest kind
of infinite sets, and they can be enumerated, which means formally that they admit a
bijection to N (or, equivalently, Z). We learned that a countable union of countable sets is
countable, and that R is uncountable.

We learned about metric spaces, including the definitions of neighborhoods, a metric,
and open/closed subsets of metric spaces. Recall that a subset of a metric space is open
if all of its points are interior points (meaning they admit a neighborhood contained in
the subset), and that a subset of a metric space is closed if it contains all its limit points.
Equivalently, the subset is closed if limits of convergent sequences in the subset are also
in the subset.

A useful result is that subset is closed if and only if its complement is open. Keep in
mind that subsets can be neither open nor closed, and that they can also be open and
closed. We learned functions between metric spaces are continuous if and only if pre-
images of open sets in the codomain are open sets in the domain (or, equivalently, pre-
images of closed sets in the codomain are closed in the domain).

Keep in mind that the openness or closedness of a set is a property of the ambient metric
space in which it exists (for instance, (0, 1] is neither closed nor open in the metric space R,
but both closed and open in the metric space (0, 1]). There is an important correspondence
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between open sets in a metric space and those in a metric space it contains. In particular,
for E ⊂ Y ⊂ X, E is open in Y if and only if E = Y ∩U for U an open set in X.

A set K is compact if all of its open covers reduce to finite subcovers (i.e. K ⊆ ∪α∈AGα

and Gα all open implies that K ⊆ ∪n
i=1Gαi). We learned that compactness is equivalent

to sequential compactness in metric spaces, which is the property that all infinite subsets
have limit points. An equivalent, and perhaps more intuitive, definition of sequential
compactness that all sequences in K have a convergent subsequent in K (whose limit is in
K).

We learned that compact sets are always closed and bounded, and that the converse is
true in Rk and CK, but not in general. Continuous functions send compact sets to compact
sets, and they also send connected sets to connected sets. Applying the results to contin-
uous functions f : [a, b] → R, you can conclude that f ([a, b]) is compact and connected.
This implies that the image of [a, b] attains its maximum and maximum and minimum,
because it is compact, and that it attains all values between f (a) and f (b), because of our
characterizations of connected subsets of R. These are the extreme and intermediate value
theorems, respectively.

Chapter 3
We learned about sequences and series. A sequence is the image of a function defined

on N, and the limit of a sequence xn is the point ` such that ∀ε > 0, ∃N s.t. n ≥ N =⇒
d(xn, x) < ε. Limits are unique in metric spaces, allowing us to use the word ’the’ in the
previous sentence. For a function f , we write limt→x f (t) = a if ∀ε > 0 ∃δ > 0 such that
0 < d(t, x) < δ =⇒ d( f (t), a) < ε.

Convergent sequences are bounded, but bounded sequences need not be convergent.
In Rk, bounded sequences have convergent subsequences (as they sit in a compact k-cell,
which is also sequentially compact). Another partial converse is that monotonic sequences
in R converge if they’re bounded.

A sequence is Cauchy if ∀ε > 0, ∃N such that m, n ≥ N =⇒ d(xn, xm) < ε. In complete
metric spaces, like Rk and Ck, Cauchy sequences converge (in fact, this is the definition of
completeness).

Series are said to converge if the sequences of their partial sums converge, which al-
lows us to restate results from sequences as results for series. In particular, the Cauchy
criterion for series - which follows from that for sequences - implies that a real series
with the following Cauchy property convergences: ∀ε > 0, ∃N ∈ N s.t. m, n ≥ N im-
plies |∑m

k=n ak| < ε. The Cauchy property for series implies that an → 0, by considering
m = n + 1. We can also make use of the Monotone convergence theorem for sequences
to conclude that a series ∑ an with an ≥ 0 converges if and only if its partial sums are
bounded.

The root test considers α = lim sup |an|1/n. When α < 1, it concludes that ∑ an con-
verges absolutely (meaning ∑ |an| converges), and when α > 1 it concludes that the series
diverges. We also learned about the ratio test. Power series are defined to be series of
the form ∑∞

n=0 cnzn - the root test leads us to define R = 1
lim sup |cn|1/n , and conclude that

the power series converges when |z| < R and diverges when |z| > R. Since we’re on the
subject of sequences and series of numbers, we’re going to jump to sequences and series
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of functions.

Chapter 7
A sequence of functions fn converges to f pointwise if ∀x ∈ X, fn(x) → f (x). Infor-

mally, uniform convergence says that this takes place in a controlled way. A sequence of
functions fn converges to f uniformly if || fn − f || = supx∈X | fn(x)− f (x)| converges to
0. Equivalently, ∀ε > 0, ∃N such that ∀x ∈ X, ∀n ≥ N, | fn(x) − f (x)| < ε. Crucially,
uniform convergence does not permit delta to be selected as a function of x.

Note that pointwise and uniform convergence are properties of the functions fn and of
the domains on which they are defined. For instance, power series ∑∞

n=0 cnzn converge
uniformly on any compact subset of (−R, R) but only pointwise on (−R, R).

We learned that uniform limits of continuous functions are continuous, but that the
same is not true for pointwise limits. We also learned about how sequences and series
of functions interact with integration and differentiation. The Weierstrass theorem states
that every continuous functions on [a, b] is the uniform limit of a sequence of polynomials.

Chapter 4
Here we talked about continuous functions and their properties, much of which we’ve

already mentioned. In this chapter we defined limt→x f (t), defined f to be continuous at
x if ∀ε, ∃δ > 0 s.t. ∀y, |x− y| < δ implies | f (x)− f (y)| < ε. We saw that this is equivalent
to the condition that limt→x f (t) = f (x). f is continuous on its domain if it is continuous
at all points in its domain, and it is uniformly continuous if it is continuous on its domain
and δ can be selected only as a function of ε (and not of x).

Continuity on a compact set implies uniform continuity, and continuous functions pre-
serve compact and connected sets. For real functions f : R → R, we talked about left and
right limits, f (x−) and f (x+).

Chapter 5
When it exists, the derivative of f at x is defined f ′(x) = limt→x

f (t)− f (x)
t−x . Differen-

tiable functions are continuous, but continuous functions need not be differentiable. Dif-
ferentiable functions have derivative zero at local minima and maxima. The Mean value
theorem implies that a differentiable3 function f : [a, b] → R satisfies f (b) − f (a) =
(b− a) f ′(x) for some x ∈ (a, b).

Chapter 6
This chapter was about integration - we used lower and upper sums to define upper

and lower integrals, and defined the integral to be equal to the upper and lower integrals
when they coincide. We saw that f is Riemann-integrable, written f ∈ R, if ∀ε, ∃P s.t.
U(P, f )− L(P, f ) < ε.

Among functions [a, b]→ R, the ladder of nice functions is roughly

3Technically we demand that f be continuous on [a, b] and differentiable on (a, b), as we haven’t defined the
notion of differentiability for endpoints.
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{differentiable} ⊂ {continuous} ⊂ {finitely many continuities} ⊂ {integrable} ⊂ {bounded}
All of these inclusions are strict. Integration has many of the nice properties that limits

do (e.g. integration respects sums and scaling). We saw that f ≥ 0 implies
∫ b

a f dx ≥ 0 and

that | f | ≤ M implies |
∫ b

a f dx| ≤
∫ b

a | f |dx ≤ M(b− a).
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