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PRELIMINARIES

These notes were taken during the spring semester of 2020 in Harvard’s Math 137, Al-
gebraic Geometry. The course was taught by Dr. Brooke Ullery and transcribed by Julian
Asilis. The notes have not been carefully proofread and are sure to contain errors, for
which Julian takes responsibility. Corrections are welcome at asilis@college.harvard.edu.

1. INTRODUCTION, ALGEBRAIC SETS

Some introductory texts on algebraic geometry can sacrifice content for form, focusing
on convincing you that algebraic geometry is cool and pretty instead of teaching you
very much about it. We’ll place more priority on content, really getting into the heart
of algebraic geometry. For that next couple weeks that’ll mean that we’ll be talking about
curves.

Before we get there, let’s talk a bit about what algebraic geometry is and the kinds
of questions that it can help answer. Roughly speaking, algebraic geometry (AG) is the
study of geometric objects called varieties. Varieties are (locally) defined by polynomial
equations in kn, where k is a field. So we might write

V = {(a1, . . . , an) ∈ kn| fi(a1, . . . , an) = 0} ⊆ kn

where the fi are elements of k[x1, . . . , xn].
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Example 1.1. Varieties include conics in R2 like V1 = {(x, y)|x2 + 4y− 1 = 0}, which
is an ellipse. Or V2 = {(x, y)|x2− y2− 1 = 0}, which is a hyperbola. In each of these
examples we only looked at the zeroes of a single polynomial, but keep in mind that
we’re allowed to look at the shared zeroes of an arbitrary collection of polynomials.

Roughly speaking, varieties give us a dictionary between geometry and algebra, whereby
questions concerning the geometry of a curve can be translated into questions at the level
of commutative algebra. Varieties need not live in kn, but it’ll turn out that we can often
translate things to kn.

What kinds of questions can we ask about varieties? For V a variety, it is sensible to ask
about:

(a) Singularity theory - what kind of geometry does V have near a point? Cusps, etc.
How to find a ”smooth model” of a variety?

(b) Intersection theory - how do varieties intersect? In the plane, a line and a conic can
intersect in 0, 1, or 2 points. This includes making precise notions like multiplicity.

(c) Number theory - counting rational points in a variety. This includes Diophantine
problems, like asking what the rational solutions to xn + yn = 1 are. Geometrically,
this translates to asking what the corresponding variety in Q2 looks like.

(d) Embedding questions - given a variety V, is there an embedding V ↪−→ kn? If
so, what’s the smallest n such that an embedding exists? Is there an embedding
V ↪−→ Pn? If there is, V is called a projective variety

(e) Points imposing conditions on polynomials - how many polynomials pass of de-
gree n pass through k points? E.g. if p1, . . . , p5 ∈ R2, which conics contain them?
It turns out that all sets of 5 points are contained in some conic, and most are con-
tained in a unique conic.

Now let’s really get into things. For the moment, we’ll consider fields k which are alge-
braically closed, meaning all polynomials in k[x] have zeroes in k (or, equivalently, surject
onto k). By induction, this implies that any element of k[x] has all its roots in k and is the
product of linear factors.

Example 1.2. C is famously algebraically closed but R is not: x2 + 1 has no real
roots.

Definition 1.3. Affine n-space, denoted An
k or An, is the set of n-tuples of elements of k. It

is not endowed with such structure as an origin or the structure of a vector space.

We’ll be thinking of polynomials as functions from An
k to k, as well as being elements of

a (polynomial) ring.

Definition 1.4. A conic is the zero set of a quadratic polynomial g(x, y) = ax2 + bxy +
cy2 + dx + ey + f .
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Definition 1.5. Let S ⊆ k[x1, . . . , xn] be a set of polynomials. Then V(S) is the set of
common zeroes of the elements of S. More explicitly,

V(S) = {p ∈ An| f (p) = 0 ∀ f ∈ S}.
Moreover, X ⊆ An is an algebraic set if X = V(S) for some S ⊆ k[x1, . . . , xn].

Proposition 1.6. Let S ⊆ k[x1, . . . , xn] and I = (S). Then V(S) = V(I).

Proof. Clearly V(S) ⊇ V(I). In the other direction, a zero of f1, . . . , fn is also a zero of
α1 f1 + · · ·+ αn fn. �

So we need only worry about algebraic sets arising from ideals of polynomial rings
(since they all do!). Using only definition, we can prove a few more basic properties of
V(−).
Proposition 1.7. The following hold for V(−) as defined above:

(1) It’s inclusion reversing: I ⊆ J implies V(I) ⊇ V(J).
(2) If {Iα} is a collection of ideals, then ∩αV(Iα) = V(∪α Iα). So algebraic sets are closed

under arbitrary intersection.
(3) If f , g ∈ k[x1, . . . , xn] then V( f ) ∪ V(g) = V( f g). More generally, V(I) ∪ V(J) =

V(I J) for I, J ideals. So algebraic sets are closed under finite unions.
(4) V(0) = An, and V(1) = ∅. And V(x1 − a1, . . . , xn − an) = {(a1, . . . , an)}, so any

finite set is algebraic.

Remark 1.8. The third claim of the above proposition cannot be made stronger: algebraic
sets are not in general closed under infinite unions. More importantly, the above propo-
sitions tell us that algebraic sets behave like closed sets in topological spaces (contain An

and ∅, closed under arbitrary intersections and finite unions).

Definition 1.9. X ⊆ An is Zariski closed if X is an algebraic set. A Zariski open set is the
complement of a Zariski closed set.

The Zariski open sets form the Zariski topology on affine space, which is always strictly
coarser than the Euclidean topology.

2. RADICAL IDEALS, IRREDUCIBILITY, NOETHERIAN RINGS

Last time we talked about how to move from polynomial to algebraic sets in affine space
using the V(−) function. Today we’ll talk about how we can move in the other direction,
from points of affine space to polynomials over the appropriate field.

Again let k be an algebraically closed field, R = k[x1, . . . , xn], and X ⊆ An.

Definition 2.1. The ideal of X, I(X), is the set of polynomials in R that vanish on X.

This might look like an inverse to V(−), but unfortunately this isn’t quite so.

Example 2.2. Let X = Z ⊆ A1
C. Then V(I(X)) = V(0) = A1 6= X. Perhaps more

interestingly, let J = (y, y− x2) ⊆ C[x, y]. Then V(J) = V(y) ∩ V(x2) = {(0, 0)},
and I(V(J)) = (x, y) 6= J.
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In general, we may ask how J and I(V(J)) compare. It’s fairly easy to see that J ⊆
I(V(J)), but something stronger is true.

Definition 2.3. Let R be a ring and I ⊆ R an ideal. The radical of I is radI = {a ∈ R|an ∈
I, n ∈N}. An ideal I is radical if I = radI.

Remark 2.4. In this class we’ll assume that all rings are commutative.

Lemma 2.5.
√

I is a radical ideal.

Proof. To see that radI is an ideal, suppose a, b ∈ radI meaning an ∈ I and bm ∈ I. Then
(a − b) ∈ radI because (a − b)n+m ∈ I. And ca ∈ radI because (ca)n = cnan ∈ I. To
see that radI is radical, note that if a ∈ radradI then an ∈ radI so anm ∈ I and thus
a ∈ radI. �

Proposition 2.6. Let R = k[x1, . . . , xn]

a) If J ⊆ R is an ideal, then radJ ⊆ I(V(J)).
b) If X ⊆ An, then X ⊆ V(I(X)).

Proof. If f ∈ radJ then f n ∈ J for some n and thus if P ∈ V(J) then f n(P) = 0. So f (P) = 0
and f ∈ I(V(J)). b) follows from definition. �

The following claims are left as exercises to check on your own.

Corollary 2.7. I is inclusion-reversing, I({(a1, . . . , an)}) = (x1 − a1, . . . , xn − an), I(X) is a
radical ideal, and V(I) = V(radI).

Example 2.8. Let’s look at the cuspidal plane curve X = {(t2, t3)} ⊆ A2
C. Is this an

algebraic set? For (x, y) ∈ X, we have x3 − y2 = 0, so X ⊆ V(x3 − y2). On the other
hand, if (a, b) ∈ V(x3 − y2) then choose t such that t2 = a. Then a3 − b2 = 0 =⇒
t6 = b2. WLOG we can assume b = t3 so indeed (a, b) = (t2, t3) ∈ X.
Now let I = (x2 + y2, x2 − y2) ⊆ C[x, y]. What’s V(I)? Geometrically, V(I) =
V(x2 + y2)∩V(x2− y2) = A∩ B for A = V(x + iy)∪V(x− iy) and B = V(x + y)∪
V(x− y). By drawing two sets of perpendicular lines through the origin, we can see
that V(I) = {(0, 0)}. Though it would’ve been easier to note that I = (x2, y2) and
V(I) = V(radI) = V(x, y) = {(0, 0)}.

There’s a notion in algebraic geometry like that of connectedness in topology, which
allows us to decompose algebraic sets appropriately. It revolves around the notion of
reducibility.

Definition 2.9. An algebraic set X is reducible if X = X1 ∪ X2 where X1, X2 ⊆ X are
algebraic sets. Otherwise X is irreducible.

Example 2.10. Let L ⊆ A2 be a line. Any X ( L which is algebraic will consist of a
finite set of points. So L is irreducible. On the other hand, V(xy) = V(x) ∪ V(y) is
reducible while V(x2) = V(x) ∪V(x) is irreducible.
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Definition 2.11. If X = X1 ∪ · · · ∪ Xn for each Xi an irreducible algebraic set and Xi 6⊂ Xj
the Xi are called the irreducible components of X.

It turns out that these decompositions always exist and are unique, though to show why
we’ll need to get into some algebra.

Definition 2.12. A (commutative) ring R is Noetherian if every ideal I ⊆ R is finitely gen-
erated.

On the homework we’ll show that there are several equivalent characterizations of the
Noetherian property, some of which we list now.

Lemma 2.13. R is Noetherian if and only if either of the following hold
1) every strictly increasing chain of ideals terminates in finite time
2) every collection of ideals in R has a maximum with respect to inclusion

Proof. PSet 1 �

How can we bring this back to algebraic geometry? Via our function I(−)! The follow-
ing claim explains what we mean.

Proposition 2.14. k[x1, . . . , xn] is Noetherian ⇐⇒ every algebraic set in An is the intersection
of finitely many hypersurfaces.

That k[x1, . . . , xn] is Noetherian is a consequence of the Hilbert Basis theorem, which
states that when R is Noetherian, R[x] is as well.

3. HILBERT BASIS, IRREDUCIBLE DECOMPOSITION

Last time we talked about the Hilbert basis theorem, which states that R[x] is Noether-
ian when R is Noetherian.

Corollary 3.1. Any decreasing chain of algebraic sets terminates.

Proof. Repeatedly using Hilbert basis, we have that R[x1, . . . , xn] is Noetherian. Passing
through V and using the ascending chain condition formulation of the Noetherian condi-
tion gives the result. Recall that V is inclusion-reversing. �

Now we’re ready to prove what we wanted to show last time about irreducible decom-
positions.

Theorem 3.2. Let X be an algebraic set. Then
a.) We can write X = X1 ∪ · · · ∪Xn where Xi is irreducible (i.e. cannot be written as a union

of proper algebraic subsets)
b.) The above decomposition is unique

Proof. To decompose X, repeatedly write its components as unions of proper algebraic
subsets. This procedure terminates by the above corollary. To see that it’s unique, suppose
X1 ∪ · · · ∪ Xr = Y1 ∪ · · · ∪ Ys are two irreducible decompositions. For each Xi, we have
Xi = ∪s

j=1(Yj ∩ Xi). Since Xi is irreducible, one of these is all of Xi and thus Xi ⊆ Yj for
some j. But similarly, Yj ⊆ Xk for some k, so Xi ⊆ Xk, producing contradiction. �
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We’ve seen that algebraic sets give rise to ideals in polynomial rings via the I function;
how does this look when the algebraic set is irreducible?

Proposition 3.3. X is irreducible ⇐⇒ I(X) is prime.

Proof. Suppose X is reducible, meaning we can write X = X1 ∪ X2. Then I(X1), I(X2) )
I(X) by a question on PSet 1. Let fi ∈ I(Xi) \ I(X). Then f1 f2 ∈ I(X), so I(X) isn’t
prime. Now assume I(X) is not prime. Then there exist f , g /∈ I(X) with f g ∈ I(X). So
X ⊆ V( f g) = V( f )∪V(g). But X 6 sub V( f ), V(g) so X = (V( f )∩ X)∪ (V(g)∩ X). Thus
X is reducible. �

We’ll soon see that if J is prime then V(J) is irreducible, as long as k is algebraically
closed.

Example 3.4. Consider f = y2 + x2(x− 1)2 ∈ R[x, y]. You can check that this poly-
nomial is irreducible, so it’s prime. But the zeroes of f are {(0, 0), (1, 0)}, which is
reducible.

Now we turn to dimension: if X ⊆ An is an algebraic set, we can write X ⊇ Xd ) · · · )
X0 ) ∅. The maximal such d is the dimension of X.

Example 3.5. dim A1 = 1. It’s relatively easy to see that dim An ≥ n, but it’s pretty
hard to show that it exactly equals n (though it does).

Equivalently, the dimension of a ring X equals the maximal length of an increasing
chain of prime ideals containing I(X).1 Now let’s look at the irreducible algebraic sets in
A2. I claim that the following are irreducible:

1.) ∅ = V(1)
2.) A2 = V(0)
3.) (a, b) = V(x− a, y− b)
4.) Plane curves of the form V( f ) for f irreducible.

To show that these are all the possibilities, it suffices to show the following.

Proposition 3.6. If f , g ∈ k[x, y] with no common factors then V( f , g) = V( f )∩V(g) is finite.

Definition 3.7. For R an integral domain, the field of fractions of R is the set { a
b |a, b ∈ R, b 6=

0} with a
b = c

d if and only if ad = cb.

Example 3.8. The field of fractions of k[x1, . . . , xn] is the textitfield of rational func-
tions denote k(x1, . . . , xn).

Another tool which will be good to have our disposal is Gauss’s theorem.

Theorem 3.9 (Gauss’s theorem). For R a UFD with field of fractions K, then if f is irreducible
in R[x] it’s also irreducible in K[x].

1I, like V, is inclusion-reversing.
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Back to the previous proposition:

Proposition 3.10. If f , g ∈ k[x, y] with no common factors then V( f , g) = V( f ) ∩ V(g) is
finite.

Proof. If f and g have no common factors in k[x, y] = k[x][y], then by Gauss’s theorem they
don’t have common factors in k(x)[y]. Since k(x) is a field, k(x)[y] is a PID. So ( f , g) =
(h) ⊆ k(x)[y] for some h. Since h divides f and g, we have ( f , g) = 1 and thus r f + sg = 1
for some r, s ∈ k(x)[y]. Clearing denominators, we have a f + bg = d in k[x]. Egh i missed
the rest of the proof. �

4. NULLSTELLENSATZ

Last time we talked about classifying the irreducible algebraic sets in A2. We claimed
that the irreducible algebraic sets take the form

1.) ∅ = V(1)
2.) A2 = V(0)
3.) (a, b) = V(x− a, y− b)
4.) Plane curves of the form V( f ) for f irreducible.

We showed that these are all the possibilities, so it remains only to show that the plane
curves of 4) are indeed irreducible.

Proposition 4.1. If f ∈ k[x, y] is irreducible then I(V( f )) = ( f ), so V( f ) is irreducible.

Proof. We know ( f )I(V( f )). On the other hand, if g ∈ I(V( f )) then V( f ) ⊆ V(g). Since k
is algebraically closed, we claim V( f ) is infinite. Without loss of generality, f has positive
degree in x, so we can write f = ad(y)xd + · · ·+ a1(y)x. For each of the infinitely many
α ∈ k such that ad(y) doesn’t vanish, f (x, α) is a degree d polynomial so it has at least
one root. Since there are infinitely many α for which this is the case, f has infinitely many
roots. Since V( f ) is infinite and V( f ) ⊆ V(g), we have that V( f , g) is infinite. So, by the
theorem from last time, f and g have a common factor. Since f is irreducible, f divides g,
as desired. �

So we’ve classified algebraic sets in A2 - cool. Let’s pull back to some of the ideas we
were talking about on the first day, in particular the idea of having a dictionary between
algebra and geometry. So far we’re equipped with the following tool

V : {ideals in k[x1, . . . , xn]} → {alg. sets in An
k}

And we’ve seen that it’s
• Inclusion-reversing: I ⊆ JV(J) ⊆ V(I)
• Surjective, by definition
• If X is algebraic, then V(I(X)) = X, so I is a right inverse to V.
• Not injective; for instance V(x2) = V(x)
• V(I) = V(

√
I)

It’s now relatively natural to ask whether restricting to radical ideals turns V into a bijection
between ideals and algebraic sets. The answer in general is no, if we allow k not to be
algebraically closed.
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Example 4.2. V doesn’t inject out of radical ideals in R[x, y]. (x2 + y2) and (x, y) are
prime and thus radical, but over R they have the same zero set.

Nullstellensatz says that as long k as is algebraically closed, however, V does restrict to
a bijection from radical ideals in the polynomial ring to algebraic sets in affine space.

Theorem 4.3 (Hilbert’s Nullstellensatz). Let k be algebraically closed and I ⊆ k[x1, . . . , xn] an
ideal. Then I(V(I)) =

√
I. In particular, V is bijective on radical ideals.

In order to prove this we need some algebra we haven’t seen yet as well as the weak
Nullstellensatz, which is as follows:

Proposition 4.4 (Weak Nullstellensatz). If k = k and I ( k[x1, . . . , xn] a proper ideal then
V(I) 6= ∅.

Proof. Pick a maximal ideal m ⊃ I. Then V(m) ⊆ V(I). We make use of the result
that when k = k, the maximal ideals of k[x1, . . . , xn] are exactly those of the form (x1 −
a1, . . . , xn − an), though we won’t prove this until next time. �

Now back to the OG Nullstellensatz.

Proof of original Nullstellensatz. We know
√

i ⊆ I(V(I)). Now let I = ( f1, . . . , fr) and
g ∈ I(V(I)). Letting R = k[x1, . . . , xn] and S = k[x1, . . . , xn+1], we now define J =
( f1, . . . , fr, xn+1g− 1) ⊆ S. Now consider V(J) ⊆ An+1. If P ∈ V(J) then fi(P) = 0 ∀i so
g(P) = 0. So xn+1g− 1 evaluated at P is not 0. So V(J) = ∅ and by the weak Nullstel-
lensatz, J = S. Then 1 ∈ J and so ∑ ai fi + b(xn+1g− 1) = 1 for some ai, b ∈ S. Now let
N be the highest power of xn+1 appearing in the equation (in any term), and set y = 1

xn+1
.

Multiplying both sides by yN and cancelling the xn+1’s yields ∑ ãi fi + b̃(g − y) = yN

where ã1, . . . , ãr, b̃ ∈ k[x1, . . . , xn, y]. Substituting g for y, we get gN = F + 0 ∈ I, and thus
g ∈ radI. �

Corollary 4.5. We can now start filling the dictionary between commutative algebra and algebraic
geometry. Let S = k[x1, . . . , xn]. Then there are the following correspondences

AG CA
algebraic sets in An radical ideals in S
irreducible alg. sets prime ideals
points in An maximal ideals (x1 − a1, . . . , xn − an)

∅ (1) = S
An (0)
inclusion of alg. sets (reverse) inclusion of ideals
irreducible hypersurfaces irreducible polynomials, up to scaling
algebraic subsets of V(I) radical ideals containing I (= radical ideals in S/I)

Corollary 4.6. For k = k and I ⊆ k[x1, . . . , xn] = S an ideal, V(S) is finite if and only if S/I is
a finite dimensional k-vector space.
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Example 4.7. Let’s apply the above corollary
1.) k[x] has k-basis 1, x, x2, . . . and V(0) = A1, which is infinite.
2.) k[x, y]/(x2, y) has basis 1, x so dimension 2 and V(x2, y) = {(0, 0)} is finite.
3.) k[x, y]/(y, x(x− 1)) has basis 1,x and V(y, x(x− 1)) = {(0, 0), (1, 0)}.
4.) f ∈ k[x] has degree d > 0. Then k[x]/( f ) has basis 1, x, . . . , xd−1.

Note that the dimension dimk(S/I) is called the length of the corresponding scheme.
And even though V(x2, y) = V(x, y), the two ideals define different schemes.

5. MODULE-FINITENESS, RING-FINITENESS, AND INTEGRALITY

I’m going to finish up what we were working on last time, i.e. corollaries to the Null-
stellensatz.

Corollary 5.1. For k algebraically closed and I ⊆ k[x1, . . . , xn] = S an ideal, then V(I) is finite
if and only if S/I is a finite-dimensional k-vector space.

Proof. Assume dimk(S/I) < ∞ and let P1, . . . , Pr ∈ V(I). Note that we can find f1, . . . , fr ∈
S such that fi(Pj) = δi j. We’d like to show that the fi’s are linearly independent in S/I.
Let λ1, . . . , λr ∈ k such that ∑ λi fi = 0. Then ∑ λi fi ∈ I. Since Pj ∈ V(I), then λj =

∑ λi fi(Pj) = 0. So all the i are 0 and the fi are linearly independent. So r ≤ dimk(S/I) < ∞
and V(I) is finite.

Now suppose that V(I) = {P1, . . . , Pr}. For each j ∈ {1, . . . , n}, define f j = (xj −
a1j) . . . (xj − arj) where aij is the jth coordinate of Pi. Note that f j(Pi) = 0 for all i, j. So

f j ∈ I(V(I)) =
√

I. Then there exists an N >> 0 with f N
j ∈ I for all j. Then f

N
j = 0. So

xj
Nr equals a k-linear combination of smaller powers of xj. Thus we can generate S/I as a

vector space using finitely many monomials and dimk(S/I) < ∞. �

Now onto a bit of an algebra detour - recall that the step in the proof of the weak Null-
stellensatz is that when k = k, the maximal ideals of k[x1, . . . , xn] are exactly those which
take the form (x1 − a1, . . . , x1 − an). We’ll need some algebra to tackle this.

Definition 5.2. M is a finitely generated R-module if there exist m1, . . . , mn ∈ M with M =
Rm1 + · · ·+ Rmn.

Definition 5.3. Suppose S is a ring with R ⊆ S a subring. Then S is an R-module and in
this case we’ll call it an R-algebra.

Definition 5.4. If S is finitely generated as an R-module, then S is finite over R, or module-
finite over R.

Now let v1, . . . , vn ∈ S. We denote the subring generated by R, v1, . . . , vn in S by
R[v1, . . . , vn]. Roughly, this is the ring of ”polynomials” in v1, . . . , vn with coefficients in R.

Definition 5.5. S is ring-finite over R, or a finitely generated R-algebra, if S = R[v1, . . . , vn]
for some v1, . . . , vn ∈ S.
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Note that if S = R[v1, . . . , vn] then there’s a natural surjection R[x1, . . . , xn] � S with
xi 7→ vi.

Definition 5.6. v ∈ S is integral over R(⊆ S) if there’s a monic polynomial f ∈ R[x] with
f (v) = 0. S is integral over R if every v ∈ S is.

You can check that
1) Module- and ring-finiteness are both transitive. Integrality is also transitive but

harder to show - we’ll see that on PSet 3
2) Module-finite implies ring-finite.

We’ll see that the set of elements of S that are integral over R form a ring, called the
integral closure of R in S. And if R is an integral domain, its integral closure (without
reference to a bigger ring) is its integral closure in its field of fractions.

Example 5.7. Let’s consider some examples of integrality:
1) R[x] is ring-finite but not module-finite or integral over R.
2) R[x]/(x2) = R + Rx is module finite and integral over R.
3) Q[

√
2, 3
√

2, ] is not ring finite over Q (so it’s not module-finite) but it is inte-
gral.

Next up is a proposition that we’ll find really useful moving forward:

Proposition 5.8. For R ⊆ S, S an integral domain, and v ∈ S, the following are equivalent:
1) v is integral over R
2) R[v] is module-finite over R
3) There’s a subring R′ ⊆ S containing R[v] that’s module-finite over R.

Proof. (1) =⇒ (2): If v is integral over R, then vn + a1vn−1 + · · ·+ an = 0 for appropriately
ai ∈ R. So vn ∈ R + Rv + · · ·+ Rvn+1. So R[v] is module-finite over R. For (2) =⇒ (3),
set R′ = R[v]. For (3) =⇒ (1), do some funky linear algebra �

6. FIELDS, AFFINE VARIETIES

Today we’ll talk mostly about algebra, hoping to return to the geometry in the near
future. Last time we talked about the equivalences between integrality of an element
v, module-finiteness of the module R[v] it gives rise to, and the existence of an R′ ⊆ S
containing R[v] that’s module-finite over R.

Corollary 6.1. The set of elements of S that are integral over R is a subring of S, called the integral
closure of R in S.

Proof. If a, b are integral over R then R[a] is module-finite over R and b is integral over R[a].
So R[a, b] is module-finite over R[a] and, by transitivity, thus over R. Setting R′ = R[a, b],
we have that R′ is module-finite over R. Setting v = ab or v = a ± b, we have by the
proposition that v is integral over R. �

Corollary 6.2. Suppose S is ring-finite over R. Then S is module-finite over R if and only if it is
integral over R.

10



Proof. First suppose S is module-finite over R and fix a ∈ S. Then R[a] ⊆ S so a is in-
tegral over R and, since a was arbitrary, S is integral over R. Now suppose S is integral
over R; we write S = R[v1, . . . , vn]. Note that R[v1] is module-finite over R, and let us
assume that R[v1, . . . , vk] is module-finite over R. Then vk+1 is integral over R[v1, . . . , vk],
so R[v1, . . . , vk+1] is module finite over R[v1, . . . , vk] and thus over R. We’ve completed the
inductive argument. �

Now we’ll pivot slightly to fields - if K ⊆ L are fields, we write K(v1, . . . , vn) to mean
the field of fractions of K[v1, . . . , vn]. Equivalently, it’s the smallest field in L containing K
and v1, . . . , vn.

Definition 6.3. L is a finitely generated field extension of K if L = K(v1, . . . , vn) for some
vi ∈ L. L is algebraic over K if all elements of L are algebraic over K.

Example 6.4. Q[
√

5] = Q(
√

5) is an algebraic extension of Q. In fact, it’s module-
finite over Q. Q(π), on the other hand, is not algebraic over Q.

Remark 6.5. If K ⊆ L are fields, then the algebraic elements of L over K form a subfield of
L.

Proposition 6.6. k(x) is a finitely-generated field extension, but it’s not ring-finite over k.

Proof. Suppose k(x) = k[v1, . . . , vn]. Then there exists b ∈ k[x] such that bvi ∈ k[x] ∀vi.
Now choose c ∈ k[x] irreducible that doesn’t divide b. We can write 1

c as a k-linear combi-
nation of monomials in the vi. Then there exists N >> 0 such that bN

c ∈ k[x], producing
contradiction. �

Proposition 6.7. k[x] ⊆ k(x) is its own integral closure.

Proof. Let z ∈ k(x) be integral over k[x]. Then zn + an−1zn−1 + · · · + a0 = 0 with the
ai ∈ k[x]. We can write z = f

g for f , g ∈ k[x] relatively prime. Multiplying through by gn,
we get that f n + an−1 f n−1g + · · ·+ a0gn = 0. So g divides f n and g ∈ k. �

Theorem 6.8. Let K ⊆ L be fields. If L is ring-finite over K, then L is module-finite (and thus
algebraic) over K.

Proof. Eh, zoned out during this proof. �

Theorem 6.9. If k is algebraically closed and m ⊆ k[x1, . . . , xn] is a maximal ideal then m =
(x1 − a1, . . . , xn − an) for some ai ∈ k.

Proof. Let L = R/m, and note k ⊆ L. L is ring-finite over k, as L = k[x1, . . . , xn]. If z ∈ L
then f (z) = 0 for some f ∈ k[x]. But k is algebraically closed, so z ∈ k and thus L = k. �

We’re done with the algebra, so let’s move back to the algebra.

Definition 6.10. An affine variety is an irreducible algebraic set. So affine varieties in An

correspond to prime ideals in k[x1, . . . , xn].

What should functions between varieties look like?
11



Definition 6.11. For V ⊆ An a variety a function f : V → k is a polynomial function or
regular function on V if there exists F ∈ k[x1, . . . , xn] with f = F|V .

Definition 6.12. The ring of regular functions on V is called the coordinate ring of V, de-
noted Γ(V).

Example 6.13. Γ(An) = k[x1, . . . , xn]

7. REGULAR FUNCTIONS

Last time we talked about coordinate rings on algebraic sets, which are functions from
the algebraic set to the field which come from restrictions of polynomials from greater
affine space.

For instance, for V = V(y − x2), we have that y and x2 are the same function on V,
so inside Γ(V), they’re the same. What about V = V(xy − 1) ⊆ A2. Is 1

y regular? Yes,

because xy = 1 =⇒ x = 1
y . So x and 1

y are the same function of V and 1
y is indeed regular

on V.
In general, if V ⊆ An is an algebraic set, we have a map k[x1, . . . , xn] � Γ(V) given

by restriction which gives rise to an isomorphism Γ(V) ' k[x1, . . . , xn]/I(V). This is
sometimes given as the definition of the coordinate ring, but that’s not a great way to
think about it - it conceals what’s going on and obstructs you from thinking about Γ(v) as
a collection of functions, rather than a ring.

Remark 7.1. Γ(V) is ring-finite over k. Furthermore, if V is a variety, then Γ(V) is an
integral domain.

Definition 7.2. A subvariety of V ⊆ An is a variety W ⊆ An such that W ⊆ V.

So, expanding slightly our dictionary between AG and CA, we have that subvarieties of
V correspond to prime ideals in Γ(V) – as those are prime ideals containing I(V), by the
above definition of the coordinate ring – and points of V correspond to maximal ideals in
Γ(v).

We have R � Γ(V) � Γ(W) given by restriction maps. f ∈ Γ(V) is in the kernel of the
rightmost map iff f vanishes on W meaning f ∈ IV(W). So

Γ(W) ' Γ(V)/IV(W)

' (R/I(V))/(I(W)/I(V))

Definition 7.3. Let V ⊆ An, W ∈ Am be algebraic sets. A function φ : V → W is a
regular map if there are T1, . . . , Tm ∈ k[x1, . . . , xn] such that for all a = (a1, . . . , an) ∈ V,
phi(a) = (T1(a), T2(a), . . . , Tm(a)).

Note that a regular function f on V determines a regular map V → A1.

Definition 7.4. For φ : V → W, define φ∗ : Γ(W) → Γ(V) defined by φ∗(g) = g ◦ φ to be
the pullback of φ.

Remark 7.5. If φ : V →W and ψ : W → X, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
12



The identity pulls back to itself (with different domain/codomain), so we’ve proven
that Γ is a contravariant functor from the category of algebraic sets and regular maps to
that of finitely-generated, reduced (

√
(0) = (0)) k-algebras.

Example 7.6. If X ⊆ An and f : X → An is the corresponding inclusion, then
f ∗(xi) = xi ⊆ Γ(x). So the map is just the quotient.

Proposition 7.7. Let V ⊆ An and W ⊆ Am be algebraic sets. There’s a one-to-one correspon-
dence between regular maps V →W and k-algebra homomorphisms Γ(W)→ Γ(V).

Proof. Sort of tedious. �

So turning a map into its k-algebra homomorphism retains all information, which is a
remarkably strong statement.

8. REGULAR MAPS

Last time we talked about regular maps - as always, a regular map is an isomorphism if it
has a two-sided inverse. On the homework we’ll see that this is a stronger condition than
bijectivity.

Corollary 8.1. φ : V → W is an isomorphism if and only if φ∗ : Γ(W) → Γ(V) is an isomor-
phism.

Proof. φ ◦ ψ = id ⇐⇒ (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ = id, by Proposition 7.7. �

Example 8.2. Consider φ : A1 → V(y − x2) = V defined by t 7→ (t, t2). Then
φ : V → A1 defined by (x, y) 7→ x is regular and equals the inverse of φ, so φ is an
isomorphism.
An alternative solution would have been to check that φ∗ : k[x, y]/(y− x2) → k[t]
defined by x 7→ t and y 7→ t2 is an isomorphism.

Lemma 8.3. Let φ : V →W be a regular map and X ⊆W algebraic. Then
a.) φ−1(X) is algebraic
b.) If X ⊆ φ(V) and φ−1(X) is irreducible, then X is irreducible.

Proof. a.) X = V( f1, . . . , fr) = V( f1) ∩ . . . capV( fr), so φ−1(X) = ∩φ−1(V( fi)) and
φ−1(V( fi)) = {a ∈ V| fi(φ(a)) = 0}. So φ−1(V( fi)) = {a ∈ V|φ∗( fi)(a) = 0} =
V(φ∗( fi)).

b.) Suppose X = A ∪ B for A, B algebraic. Then φ−1(X) = φ−1(A) ∪ φ−1(B). Without
loss of generality, φ−1(A) = φ−1(X) and A = X.

�

Now we’ll talk about injectivity and surjectivity.

Proposition 8.4. Suppose that V and W are algebraic. If ψ : V → W is regular and surjective,
then φ∗ is injective.
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Proof. If f ∈ Γ(W) with φ∗( f ) = 0, then V � W
f−→ k so f = 0. �

The converse here doesn’t hold, due to the structure of these regular maps - i.e. it is in
general not possible for two maps to coincide one all but one arbitrary part of the domain.

Definition 8.5. Lete φ : V → W be regular. φ is dominant if φ(V) = W. Equivalently,
I(φ(V)) = I(W).

Proposition 8.6. φ : V →W is regular if and only if φ∗ is injective.

Proof. Suppose φ∗ is injective, and let f ∈ I(φ(V)). If φ∗( f ) = 0 then f ∈ I(W) (or f = 0).
Now assume φ is dominant and f ∈ Γ(W). If φ∗( f ) = 0. then f ∈ I(φ(V)) = I(W) and
thus f = 0. �

Proposition 8.7. Φ∗ : Γ(W) → Γ(V) is surjective if and only if φ is an isomorphism onto its
image.

Proof. Omitted. �

Now we’ll talk about rational functions, which resemble meromorphic functions from
complex analysis (while elements of the coordinate ring resembles holomorphic func-
tions).

Definition 8.8. Let ∅ 6= V ⊆ An be a variety, with Γ(V) an integral domain. The field of
rational functions on V, denoted k(V) is the field of fractions of Γ(V),

Example 8.9. In V(xy− z2) ⊆ A3, x
z is the same rational function as z

y .

Definition 8.10. A rational function f ∈ k(V) is defined or regular at p ∈ V if ∃g, h ∈ Γ(V)
such that f = g

h and h(p) 6= 0.

In the above case, f = x
z = z

y is defined if z 6= 0 or y 6= 0.

Definition 8.11. Let f ∈ k(V) and p ∈ V. Then p is a pole of f if f is not defined at p.

Definition 8.12. The set of poles of a rational function is an algebraic subset of V.

Proof. Suppose V ⊆ An and f ∈ k(V). Now let J f = {g ∈ Γ(V)|g f ∈ Γ(V)}. J f is an ideal,
and we’d like to show that V(J f ) = pole set of f . And p is not a pole of f iff there exist
a, b ∈ Γ(V) with a

b = f and b(p) 6= 0. And that holds iff there exist b ∈ J f with b(p) 6= 0.
And that occurs exactly when p /∈ V(J f ), so we’re done. �

9. LOCAL RINGS

Today we’ll talk a bit about local rings at points.

Definition 9.1. Let p ∈ V for V a variety. Then Op(V) ⊆ k(V) is the set of rational
functions on V that are defined at p, called the local ring of V.

14



Recall that k(V) is the field of fractions of Γ(V). Note k(p) = k, and that in general this
won’t equal O)p(V) (a function out of V isn’t determined by what it does at p).

Proposition 9.2. Op(V) is a subring of k(V).

Proof. a
b , c

d ∈ Op(V) such that b(P), d(P) 6= 0. Then b(P)d(P) 6= 0. So products and
differences are in OP(V). �

Proposition 9.3. Γ(V) = ∩p∈VOp(V) for V a variety.

Proof. We know ⊆ (via f 7→ f
1 ). Now note that if f ∈ ∩Op(V), then f has no poles. So

if J f = {g ∈ Γ(V)|g f ∈ Γ(V)}, then V(J f ) = set of poles = ∅. So 1 ∈ J f , by Weak
Nullstellensatz, and f ∈ Γ(V). �

If f ∈ Op(V), then we can evaluate at p in a way which is well-defined. This gives rise
to a homomorphism Op(V) → k defined by f 7→ f (p). And k ⊆ Op(V) maps to itself,
so evaluation is a surjection. The kernel of this map is then maximal, and it’s called the
maximal ideal of V at p. It’s defined mp(V) = {non-units of Op(V)} = { g

1 |g ∈ IV(p)}.

Definition 9.4. A ring R is a local ring if it satisfies the following equivalent conditions:
1) The set of non-units in R is an ideal.
2) R has a unique maximal ideal

Example 9.5. C[x] isn’t a local ring. x + 1 and x are both non-units, so non-units
don’t form an ideal.

Example 9.6. R = { a
b ∈ k(x)|a, b ∈ k[x], b has nonzero constant term} is a local ring

with maximal ideal ( x
1 ). In fact, R = O0(A

1).

Proposition 9.7. Op(V) is Noetherian.

Proof. Let I ⊆ Op(V). Consider J = I ∩ Γ(V), whic is an ideal of Γ(V). Γ(V) is Noethee-
rian, so J = ( f1, . . . , fr) ⊆ Γ(V). Now let f ∈ I ⊆ O)p(V). We have f = a

b for
a, b ∈ Γ(V), b(p) 6= 0. So b f = a ∈ I ∩ Γ(V) = J. So b f = a1 f1 + · · · + ar fr for ap-
propriate ai ∈ Γ(V). Then f = ( a1

b ) f1 + · · ·+ ( ar
b ) fr. So I( f1

1 , . . . , fr
1 ). �

Let φ : V → W be a regular map of varities, and consider φ∗ : Γ(W) → Γ(V). Can we
extend φ∗ to k(W)? If so, there’s only one possible map: g

h 7→
φ∗(g)
φ∗(h) . But if h ∈ ker(φ∗),

this doesn’t work.
Instead, let p ∈ V and set Q = φ(p). Let h ∈ Γ(W) such that h(Q) 6= 0. Then V →

W h−→ k defined by P 7→ Q 7→ h(Q) 6= 0 is φ∗(h). So if g
h is defined at Q, with h(Q) = 0,

this process works. This gives rise to a well-defined map, so φ∗ induces a morphism
OQ(W) → OP(V). If g

h ∈ mQ(W), then g(Q) = 0. Thus φ∗( g
h ) ∈ mP(V). So mQ(W) gets

mapped into mP(V).
15



For the rest of the class, we’ll talk about affine plane curves. In fact, we’ll spend the next
couple weeks using the theoretical tools we’ve developed to study plane curves. Recall
that an irreducible affine plane curve C ⊆ A2 corresponds to an ideal ( f ) ⊆ k[x, y] for
f irreducible. However, we also want to consider reducible plane curves with multiple
component. If f , g ∈ k[x, y] and ( f ) = (g), then f = λg for nonzero λ ∈ k.

Definition 9.8. An affine plane curve is an equivalence class of non-constant polynomials
in k[x, y] with f ∼ g ⇐⇒ f = λg (λ 6= 0).

Note that V(x) = V(x2) but x 6∼ x2. If f = ∏ f ei
i for the fi irreducible. The fi are the

components of f and the ei are their multiplicities.

Definition 9.9. p is a simple point or smooth point if fx(p) 6= 0 pr fy(p) 6= 0. In this case
the tangent line is fx(p)(x− a) + fy(p)(y− b) = 0. A point that’s not simple is multiple or
singular.

10. HOMOGENEOUS POLYNOMIALS, MULTIPLICITIES

Today we’ll spend more time talking about affine place curves, which you’ll recall is a
non-constant polynomial up to scaling.

Definition 10.1. For f a plane curve and p ∈ f , P is a smooth point if fx(P) 6= 0 or
fy(P) 6= 0.

Here fz =
∂
∂z f .

Example 10.2. Let f = y2 − x3 + x, over C. Then fx = 1− 3x2 and fy = 2y are

singular at (±
√

3
3 , 0). But they’re not in V( f ), so f is nonsingular.

Example 10.3. Consider the cusp g = y2 − x3. Then gx = −3x2 and gy = 2y,
meaning g is singular at (0, 0).

Example 10.4. Take h = (x2 + y2)2 + 3x2y− y3. We have hx = 2x(2x2 + 2y2 + 3y)
and hy = 4y(x2 + y2) + 3(x2 − y2). It turns out that these are both 0 if and only if
x, y = 0.

Definition 10.5. F ∈ k[x1, . . . , xn] is homogeneous or a form of degree d if it can be written
as the sum of monomials of degree d.

As an edge case, we consider 0 to be a form of degree d for all d. We can dehomogenize F,
with respect to xn, by setting f = F(x1, . . . , xn−1, 1) ∈ k[x1, . . . , xn−1]. This is the the same
as taking the image of F in k[x1, . . . , xn]/(xn − 1) ' k[x1, . . . , xn−1].

If f ∈ k[x1, . . . , xn] is a polynomial of degree d, we can write f = f0 + · · ·+ fd with fi a
(possible 0) form of degree i and fd 6= 0.
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Definition 10.6. The homogenization of f is defined F = xd
n+1 f0 + xd−1

n+1 f1 + · · · + fd ∈
k[x1, . . . , xn+1]

Example 10.7. Let F = x2z+ y2z+ xz2 + z3. Dehomogenizing with respect to z gives
x2 + y2 + x + 1. Homogenizing then gives x2 + y2 + xz + z2 6= F. So these are not in
general inverses.

Note that homogenization commutes with multiplication but not addition.

Proposition 10.8. If F ∈ k[x, y] is homogeneous and k algebraically closed, then F factors into a
product of linear forms.

Proof. F = yrG for r ≥ 0 such that y doesn’t divide g. The dehomogenization of G is
αi(x− λi) for α, λi ∈ k. So G = α ∏i(x− λiy) and F = αy2

i (x− λiy). �

Let f be a place curve and p = (0, 0). Write f = fm + fm+1 + · · ·+ fm+n where fi is a
form of degree i and fm 6= 0.

Definition 10.9. The initial form of f at p = (0, 0) is in( f ) = fm. The multiplicity of f at p is
mp( f ) = deg(in( f )) = m.

Note that (0, 0) ∈ V( f ) if and only if m(0,0)( f ) > 0.

Proposition 10.10. p = (0, 0) is a simple point of f if and only if mp( f ) = 1.

Proof. For i ≥ 0, ( fi)x and ( fi)y are 0 or forms of degree i− 1. So fx(P) = ( f1)x(p) + 0 and
fy(P) = ( f1)y(p) + 0. If f1 = ax + by, then fx(p) = fy(p) = 0 if and only if a = b = 0.
That occurs exactly when f1 = 0. �

It’s easy to check in this case – when mp( f ) = 1 – that f1 is the tangent line to f at P.
Now set m = mp( f ). We can write fm = ∏ Lri

i , where ri is the multiplicity of the tangent
line and the Li are distinct lines.

Definition 10.11. The Li are tangent lines to f at P = (0, 0). fm is called the tangent cone to
f at the origin. If f has m = mp( f ) distinct tangeent lines at p, then p is an ordinary point
of f .

An ordinary double point, i.e. point of multiplicity 2, is a node. Note that in(gh) =
in(g)in(h).

Now let P = (a, b) and T = A2 → A2 defined T(x, y) = (x + a, y + b). We define
mp( f ) = m(0,0)(T∗( f )). If Li = αx + βy is a tangent line to T∗( f ) at (0, 0) with multiplicity
ei, then α(x− a) + β(y− b) is a tangent line to f at P.

11. DVRS

if it satisfies the following equivalent properties
1. R is Noetherian and local with principal maximal ideal
2. ∃ an irreducible t ∈ R such that every nonzero z ∈ R can be written uniquely as

z = utn for n ≥ 0 and u a unit.
17



Proof. Suppose the first condition and, say m = (t). Now suppose utn = vtm for u, v units
and n ≥ m. Then v = utn−m. Since tn−m is a unit, then n = m and u = v. Alternatively, let
z ∈ R be nonzero and z be a unit. Now let z ∈ R be nonzero. If it’s a unit, then z = zt0.
Otherwise, z ∈ (t) and z = z1t. If z1 is a unit, we’re done. Otherwise, z1 = z2t. If this
process stops, we’re done. If it doesn’t, we get a chain of ideals (z1) ⊆ (z2) ⊆ . . . . Since R
is Noetherian, (zn) = (zn+1) for some n and thus zn+1 = vzn. That means zn(1− vt) = 0
so vt = 1, producing contradiction.

Now suppose we satisfy 2. m = (t) consists exactly of non-units, so R is local. To see
R is Noetherian, suppose I ⊆ R. Let n ≥ 0 be the minimal integer such that tn ∈ I. So
(tn) ⊆ I. If z ∈ I, then z = utm and tm ∈ I with m ≥ n. So z ∈ (tn) and I = (tn). �

for R. It’s unique up to multiplication by a unit.

Remark 11.1. If R is a DVR with uniformizing parameter t, the nonzero ideals are of the
form (1) ⊇ (t) ⊇ (t2) ⊇ . . .

Example 11.2. Let a ∈ A1. Then Oa(A1) = { f
g |

f
g ∈ k(A1), g(a) 6= 0}. The maximal

ideal consists of non-units, i.e. is the ideal (x− a). SoOa(A1) is a DVR with uniform
parameters x− a.

Example 11.3. The non-units in O(0,0)(A
2) are of the form f

g with f (0, 0) = 0. Then
m(0,0) = (x, y) is not principal, so this isn’t a DVR. In particular, we’ve shown that
DVRs are PIDs.

Let R be a DVR, and fix a uniformizing parameter t. Let K be the field of fractions of R.
If f

g ∈ K, then f = utn and g = vtm, so f
g = (u

v )t
n−m. In fact, every non-zero z ∈ K has a

unique expression as utn for u ∈ R a unit.
of z, denoted ord(z). We define ord(0) = −∞. You can check that order is independent

of the choice of uniformizing parameter.
So R = {z ∈ K|ord(z) ≥ 0} and m = {z ∈ K|ord(z) ≥ 1}. As an exercise, you can show

that ord(ab) = ord(a) + ord(b) and that ord(a + b) ≥ min{ord(a), ord(b)}.

Example 11.4. Set R = O0(A
1) with m = (x), and let M = (xn)/(xn+1) ⊆

R/(xn+1). This is a k-vector space, since k ⊆ R. And every z ∈ M can be writ-
ten z = xn

f (x) with f (0) 6= 0. Note that f (x)xn = f (0)xn in M, since higher powers of

x are 0. So z = xn

f (x) =
xn

f (0) =
1

f (0)xn. So M is a 1-dimensional k-vector space.

More generally, let R be a DVR containing a field k such that the composition k→ R→
R/m is an isomorphism. Now let t ∈ R be a uniformizing parameter. Now consider
z ∈ mn. z = utn for u a unit, so the image of u in R/m is nonzero.
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