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PRELIMINARIES

These notes were taken during the fall semester of 2019 in Harvard’s Math 221, Commu-
tative Algebra. The course was taught by Dr. Brooke Ullery and transcribed by Julian Asilis.
The notes have not been carefully proofread and are sure to contain errors, for which Ju-
lian takes responsibility. Corrections are welcome at asilis@college.harvard.edu.
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1. LECTURE 1 — SEPTEMBER 4, 2019

Office hours are 11-1 on Tuesdays. The course is geared toward applications in algebraic
geometry, which helps provide some context to the math we’ll be learning. The goal is to
get through chapters 1-13 of Eisenbud, but we might not cover everything. Topics include:

• Localization
• Primary decomposition
• Nullstellensatz
• Artin-Rees lemma
• Flat families/Tor
• Completions of rings
• Noether normalization
• Systems of parameters
• DVRs
• Dimension theory
• Hilbert-Samuel polynomials (maybe)

Before we get into things, let’s discuss conventions and some of the motivation behind
what we’re doing. Naturally, all rings are commutative and unital. A ring homomorphism
respects both operations and sends 1 to 1.

Notation 1.1. For R a ring, an ideal I 6= R is prime if f g ∈ I =⇒ f ∈ I or g ∈ I. I is
maximal if it is not contained in any other proper ideals. R is a local ring if it has exactly
one maximal ideal.

With regard to motivation, commutative algebra is kind of just arithmetic geometry in
disguise. In this class, we’ll try not to stay on one side of the algebra/geometry divide.
One geometric example is R = k[x1, . . . , xn], for k an algebraically closed field (k = k). The
zero set of a polynomial, say x2

1 − x2 is a locus in kn. Prime ideals will then correspond
to subvarieties of affine space. More generally, the prime ideals of an arbitrary ring R
correspond to the points of the scheme corresponding to R (called an affine scheme).

”If you hear things you don’t understand enough times, then you’ll eventu-
ally understand them.” - Dr. Ullery.

As it turns out, all varieties and schemes can be constructed by glueing affine varieties
and schemes, which are those associated to rings. So commutative algebra really does give
rise to lots of what’s going on in algebraic geometry. Essentially, studying rings amounts
to studying local algebraic geometry.

”Commutative algebra is just local algebraic geometry.” - Dr. Ullery.
How do local rings fit into this? They describe the geometry of a scheme/variety very

close to a point. All of these statements will be made more precise later, but the idea right
now is to give a high-level overview of some of the interplay between commutative alge-
bra and algebraic geometry. To see more of the AG side, check out Smith’s ”An Invitation
to Algebraic Geometry.”

Now let’s really get started. One of the most important kinds of rings is the Noetherian
ring, because it tells us about how its ideals are generated. As an example of the impor-
tance of finite generation of ideals, for k[x1, . . . , xn] with k a field, the fact that every ideal
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is finitely generated is equivalent to the fact that every variety in An is the intersection of
finitely many hypersurfaces.

Definition 1.2. A ring R is Noetherian if every ideal of R is finitely generated.

Proposition 1.3. R is Noetherian if and only if every strictly increasing chain of ideals terminates.

Proof. If I is not finitely generated, we can choose f1 ∈ I, f2 ∈ I \ ( f1), f3 ∈ I \ ( f1, f2),
and so on. So we have a strictly increasing infinite chain of ideals. In the other direction,
if I1 ( I2 ( . . . and I = ∪Ii is finitely generated, then all of the generators are in one Ij so
I = Ij. �

Example 1.4. All fields are Noetherian rings. So are Z and Z[x].

Theorem 1.5 (Hilbert Basis theorem). If R is Noetherian, then so is R[x].

Proof. First, two definitions: for f = anxn + · · ·+ a0 ∈ R[x] with an 6= 0, we say an is the
initial coefficient and anxn is the initial term. Now let I ⊆ R[x] and choose f1, f2, · · · ∈ I as
follows:

1. Let f1 6= 0 ∈ I be an element of least degree in I.
2. Let f2 6= 0 be an element of least degree in I \ ( f1)
3. Let f3 6= 0 be an element of least degree in I \ ( f1, f2)
...

If ( f1, . . . , fn) = I, we’re done. Otherwise, let aj be the initial coefficient of f j. Then
J = (a1, a2, . . . ) ⊂ R is finitely generated. Let m be the smallest integer such that J =
(a1, . . . , am).

The claim is that I = ( f1, . . . , fm). Otherwise, consider fm+1. We have that am+1 =
∑m

`=1 u`a` for some uj ∈ R. Since deg fm+1 ≥ deg f j for m ≥ j, we have

g =
m

∑
j=1

uj f jxdeg fm+1−deg f j ∈ ( f1, . . . , fm)

Now consider fm+1 − g ∈ I \ ( f1, . . . , fm). It has degree strictly less than that of fm+1,
producing contradiction.

�

Corollary 1.6. Repeatedly applying the Hilbert basis theorem gives us that R[x1, . . . , xn] is also
Noetherian.

Corollary 1.7. If R is Noetherian and S is a finitely generated R-algebra, then S is Noetherian.

Proof. Because S is a finitely generated R-algebra, S = R[a1, . . . , an] where the ai ∈ S. In
particular, R[a1, . . . , an] - which is Noetherian - surjects on to S. So any I ⊆ S is generated
by the images of the generators of its pre-image. �

Definition 1.8. An R-module M is Noetherian if its submodules are finitely generated.

Proposition 1.9. If R is a Noetherian ring and M a finitely generated R-module, then M is a
Noetherian module.
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Proof. Let f1, . . . , fn be generators for M and take N ⊆ M a submodule. We induct on n. If
n = 1, consider the map from R to M which sends 1 to f1. Then the pre-image of N is an
ideal, and the images of its generators generate N.

Supposing this holds for n up to k, we have M/R f1 is Noetherian. For N the image of
N in M/R f1, N, N is finitely generated by g1, . . . , gs. N ∩ R f1 is a submodule of R f1, so
it’s finitely generated by h1, . . . , hr. So for a ∈ N, a is a linear combination of the gi. Then
a is generated by the gi and the hj. �

Next time we’ll talk a bit about graded modules and Hilbert functions, and after that
we’ll talk about Hom, tensors, and some slightly more category-theoretic stuff.

2. LECTURE 2 — SEPTEMBER 9, 2019

Today we’re going to talk about graded rings and graded modules. Along with local
rings, graded rings are going to be our bread and butter.

Definition 2.1. A graded ring is a ring R with a direct sum decomposition R = R0 ⊕ R1 ⊕
. . . with RiRj ⊆ Ri+j. An element f ∈ R is homogeneous if f ∈ Ri for some i. An ideal
I ⊆ R is homogeneous if it’s generated by homogeneous elements.

Example 2.2.

R = k[x1, . . . , xn]

= S0 ⊕ S1 ⊕ . . .

where Sd is the vector space of homogeneous polynomials of degree d. Sd is gener-
ated by all products of d variables.

Definition 2.3. For R = R0⊕ . . . a graded ring, a graded R-module is a module M =
∞⊕
−∞

Mi

such that Ri Mj ⊆ Mi+j.

Example 2.4. Let R = k[x1, . . . , xn].
1) If I ⊆ R is a homogeneous ideal, then R/I is a graded module, with grading

determined by R→ R/I.
2) Let M = R with M−1 = R0, M0 = R1, Mi = Ri+1, i.e. degxi = 0. This

shift in grading is referred to as a twist of R by 1, and write M = R(1).
More generally for M a graded module, M(d) ∼= M as modules and M(d)e =
Md+e.

What’s the geometric context? If I ⊆ R is an ideal describing a variety X in projective
space, then dimk((R/I)d) is the dimension of the space of homogeneous polynomials of
degree d that vanish on X. So it’s the dimension of the space of degree d hypersurfaces
that contain X.
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Definition 2.5. Let M be a finitely generated graded module over R = k[x1, . . . , xn]. The
Hilbert function of M is

HM(s) = dimk MS

Example 2.6. Take M = R with the standard grading. Then HM(s) ={
0 s < 0
(s+n−1

n−1 ) s ≥ 0
.

Example 2.7. Take M = k[x, y]/(x2, y3). Then M = M0 ⊕ M1 ⊕ M2 ⊕ M3 where

M0 = (1), M1 = (x, y), M2 = (xy, y2), M3 = (xy2). So HM(0) =


1 s = 0, 3
2 s = 1, 2
0 else

.

So it looks like weird things can happen in low degrees and then things get nicer. In fact,
it turns out that for large s, the Hilbert function eventually behaves like a polynomial.

Theorem 2.8 (Hilbert). If M is a finitely generated graded module over k[x0, . . . , xr], then HM(s)
agrees with a polynomial of degree at most r for sufficiently large s.

Proof. We assert that if H̃(s) = H(s)−H(s− 1) agrees with a polynomial over Q of degree
at most n− 1 for s ≥ s0, then H(s) agrees with one of degree at most n for s ≥ s0. The
proof is in Eisenbud.

Now we induct on the number of variables. If M is just a module over k, then it’s a
finite-dimensional vector space and HM(s) = 0 for sufficiently large s. r = −1, so we’ll
say deg(0) = -1. Now say r ≥ 0. Consider M(−1) → M given by multiplication by xr.
It preserves degree, so it’s a graded morphisms. The cokernel of this map is M/xr M and
the kernel is K(−1), where K is the kernel of the map M → M given by multiplication by
xr. We have a short exact sequence

0→ K(−1)→ M(−1)→ M→ M/xr M→ 0

Restricting focus to degree s gives us a short exact sequence (SES) on vector spaces. The
alternating sum of degrees is zero, so HM/xr M(s) − HM(s) + HM(s − 1) − Hk(s − 1) =
0 Since xr annihilates every element of K and M/xr M, they are both finitely generated
k[x0, . . . , xr−1]-modules. So by induction, the outer terms agree for sufficiently large s
with polynomials of degree ≤ r− 1.

Then so does HM(s) − HM(s − 1) and so HM(s) agrees with a polynomial of degree
≤ r. �

Definition 2.9. The above polynomial is denoted PM(s), and is the Hilbert polynomial of
M.

Returning to the geometric context, if X ⊆ Rr is a projective algebraic variety, then the
degree of its Hilbert polynomial is equal to its dimension. Additionally, d! times its initial
coefficient is equal to the degree of the variety. Finally, Riemann-Roch from algebraic
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geometry computes the Hilbert polynomial. The point is that there’s lots of geometric
data encoded in this polynomial.

Now we’re going to change gears and talk about localization.

Definition 2.10. A local ring is a ring with exactly one maximal ideal.

Local rings can be partitioned into elements that live in the maximal ideal and elements
that don’t. If you’re not in the maximal ideal, you have to generate the whole ring, so
you’re a unit. Conversely, everything in the maximal ideal is not a unit. Often times it’s
helpful to prove properties for rings by reducing to the local case - that’s done by adding
inverses so

Question 2.11. For a R a ring, for which elements can we ’add inverses’?

Well, if we add f−1 and g−1, we also add ( f g)−1. So the set of elements whose inverses
we add needs to at least be closed under multiplication. By convention, this includes the
empty product of 1. For instance, if t 6= 0 ∈ R then {1, t, t2, . . . } is multiplicatively closed.
For P ⊆ R an ideal, R − P is multiplicatively closed iff P is prime. Likewise, R \ {0} is
multiplicatively closed iff R is an integral domain.

Definition 2.12. Let M be an R-module and U ⊆ R be multiplicatively closed. The lo-
calization of M at U, M[U−1] or U−1M, is the set of equivalence classes of pairs m ∈ M,
u ∈ U, written m

u , with the equivalence relation

m
u
∼ m′

u′
⇐⇒ ∃v ∈ U s.t. vu′m = vum′ inM

M[U−1] is an R-module with m
u + m′

u′ =
u′m+um′

uu′ and r(m
u ) = rm

u . In fact, M[U−1] is an
R[U−1] module in the obvious way: ( r

u )(
m
u′ ) =

rm
uu′ .

For U ⊆ R an arbitrary set, we can take its multiplicative closure U and define M[U−1] =

M[U−1
].

What happens if u ∈ M, m ∈ M such that um = 0? Then m
1 = 0, since um = u0. The

converse holds as well.

Example 2.13. 1) In an integral domain, R[(R \ 0)]−1 is the field of fractions of
R, denoted K(R).

2) More generally, if P is a prime ideal, we write RP := R[(R− P)−1]. This is a
ring whose units are the elements which are not in P. It’s a local ring. If M is
an R-module, then Mp := M[(R− P)−1] is an Rp-module.

In fact, localization is a functor from R-modules to R[U−1]-modules.
For φ : M → N a map of R-modules and U ⊆ R multiplicatively closed, there’s a

natural map φ[U−1] : M[U−1]→ N[U−1] sending m
u to φ(m)

u .

For L
ψ−→ M

φ−→ N, you should check that (φ ◦ ψ)[U−1] = φ[U−1] ◦ ψ[U−1].
6



3. LECTURE 3 — SEPTEMBER 11, 2019

We’ll keep talking about localization today. Last time we defined localization for mod-
ules and rings, and we decided that localization is a functor. It has an associated universal
property, which is the following: Let φ : R → S be a ring homomorphism and U ⊆ R be
multiplicatively closed. If U gets sent to units in S, we can uniquely extend φ to a map φ′

from R[U−1]→ S which sends a
b to φ(a)φ(b)−1.

That’s not a great way to define localization, but it is useful for proving properties about
localization. Let’s talk more about what localizations look like. Let φ : R→ R[U−1] be the
natural map. If I ⊆ R[U−1] and r

u ∈ I, then r ∈ I. So all the numerators are in φ−1(I) and
in fact I is generated by φ−1(I).

Then the map I 7→ φ−1(I) is an injection, since φ−1(I) determines I. So what kinds of
ideals in R take the form φ−1(I) for I ⊆ R[U−1]?

Proposition 3.1. J ⊆ R is the preimage of an ideal if and only if J = φ−1(JR[U−1]).

This won’t be the case if and only if there’s some b ∈ J and u ∈ U with a
1 = b

u and a /∈ J.
In other words, u′(ua− b) = 0 for some u′ ∈ U. J is a preimage if and only if there is no
u ∈ U and a /∈ J such that au ∈ J. For instance, J is a preimage if J is prime and U ∩ J = ∅.

Proposition 3.2. The correspondence I 7→ φ−1(U) is a bijection on prime ideals avoiding U.

Example 3.3. If P ⊆ R is prime, then the prime ideals of RP are in one-to-one corre-
spondence with primes of R contained in P.

Corollary 3.4. If R is Noetherian, so is R[U−1], because its ideals have the same generators as
their preimages.

It turns out that localization can be expressed as tensor product, which is closely related
to Hom, its adjoint.

Definition 3.5. If M, N are R-modules, then HomR(M, N) is the R-module of homomor-
phisms M→ N.

Example 3.6. HomR(⊕n
i=1R, N) ∼= ⊕n

i=1N, by looking at where each of the genera-
tors go.

Hom is a functor in each of its entries. Fixing an R-module M, Hom(M,−) is a covariant
functor sending A → B to Hom(M, A) → Hom(M, B) by post-composing. It turns out
that Hom(M,−) is left-exact, meaning it preserves left-exact sequences:

0→ A→ B→ C maps to 0→ Hom(M, A)→ Hom(M, B)→ Hom(M, C)

Hom(−, M), on the other hand, is a contravariant functor, since A→ B goes to Hom(B, M)→
Hom(A, M) by pre-composing. This functor sends right-exact sequences to left-exact se-
quences, which is pretty gnarly.

A→ B→ C → 0 goes to 0→ Hom(C, M)→ Hom(B, N)→ Hom(A, N)
7



Now let’s talk tensor products.

Definition 3.7. For M, N R-modules, M⊗R N is the R-module generated by elements of
the form m⊗ n with m ∈ M, n ∈ N such that

• For r ∈ R, (rm)⊗ n = m⊗ (rn) = r(m⊗ n)
• (m + m′)⊗ n = m⊗ n + m′ ⊗ n and likewise m⊗ (n + n′) = m⊗ n + m⊗ n′

The above relations are all we have, meaning that in general, elements of M⊗R N look
like finite sums ∑

i
mi⊗ ni. It’s often times hard to tell whether different elements are equal.

Example 3.8. 1) R⊗R M ∼= M, since anything can be written 1⊗ m by scaling
appropriately using an element of R. Likewise, M ∼= M⊗R R.

2) R[x1, . . . , xm]⊗R R[xm+1, . . . , xn] ∼= R[x1, . . . , xn]
3) Q⊗Z Z[x] ∼= Q[x]
4) For I, J ⊆ R ideals, R/I ⊗R R/J ∼= R/(I + J)
5) For M an R-module and S an R-algebra, then S⊗R M is an S-module with

s(t⊗m) = st⊗m

Again we’ll find that its useful to equip ourselves with a universal property in order
to prove properties of the tensor product. First note that the function (not morphism)
⊗ : M× N → M⊗ N defined by (m, n) 7→ m⊗ n is bilinear over R.

In fact, given another bilinear f : M × N → P, there exists a unique f̂ : M ⊗ N → P
such that f̂ ◦ ⊗ = f . This is the universal property of the tensor product.

The tensor product is a functor on both sides, and it’s right-exact.

A→ B→ C → 0 maps to A⊗M→ B⊗M→ C⊗M→ 0

Lemma 3.9. The map R[U−1]⊗M→ M[U−1] defined r
u ⊗m 7→ rm

u is an isomorphism.

Proof. Define φ : M[U−1] → R[U−1] ⊗R M by m
u 7→

1
u ⊗ m. First we need to check that

this map is well-defined. Say m
u = m′

u′ . Then vu′m = vum′ for some v ∈ U, meaning
vu′ ⊗m = vu⊗m′, so 1

u ⊗m = 1
u′ ⊗m′. This is the inverse to the above function. �

Since we’ve written localization as a tensor product, we know it’s right-exact. We’ll
also show it preserves injections, meaning it straight up preserves exact sequences. This
property is called flatness

Definition 3.10. An R-module F is flat if for every inject M → N, F⊗M → F⊗ N is also
injective.

We want to show that tensoring by the localization of our ring is always flat.

Proposition 3.11. R[U−1] is flat as an R-module. Thus, localization preserves exact sequences.

Proof. Let φ : M′ → M be an injection of R-modules. We’d like to show that R[U−1]⊗R

M′ → R[U−1] ⊗R M is injective. If m′
u 7→

φ(m′

)
u = 0, then vφ(m′) = 0 for some v ∈ U,

meaning φ(vm′) = 0. So vm′ = 0 and m′
u = 0, as desired. �
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As we’ve already mentioned, many properties of modules and rings can be verified by
’checking locally’. A geometric example of this is that a variety’s smoothness is verified
by checking smoothness at each point. There’s an algebraic analogue we note state:

Lemma 3.12. For R a ring and M an R-module,
a) If a ∈ M, then a = 0 ⇐⇒ a

1 = 0 in Mm for each maximal ideal m ⊆ R.
b) M = 0 ⇐⇒ Mm = 0 ∀ maximal ideals m ⊆ R.

Proof. a) a
1 = 0 in Mm ⇐⇒ the annihilator I of a (the ideal I with ra = 0∀r ∈ I) is

not contained in m. So a
1 = 0 ⇐⇒ I = R ⇐⇒ a = 0 in M.

b) M = 0 ⇐⇒ a = 0∀a ∈ M ⇐⇒ a/1 = 0 in all Mm
�

Injectivity and surjectivity can also be checked locally.

Corollary 3.13. A map φ : M → N of R-modules is injective (resp. surjective) iff φm : Mm →
Nm is injective (resp. surjective) ∀ maximal ideals m.

Proof. The forward direction follows from flatness. On the other hand, if ker(φm) =
(ker φ)m = 0 ∀m, then ker φ = 0. Likewise with cokernels. �

4. LECTURE 4 — SEPTEMBER 16, 2019

Let’s talk about radical ideals. Last time we saw that the complement of a prime ideal
is a multiplicative set. The converse, however, does not hold - there are multiplicative sets
which do not arise as the complement of a prime ideal.

Example 4.1. {1, x, x2, . . . } ⊆ k[x] is multiplicatively closed, but its complement
isn’t an ideal (it doesn’t contain 1).

However, there is a partial converse - ideals that are maximal in the complement of a
multiplicatively closed set are prime. It usually turns out that the maximal ideals in some
set of ideals are prime.

Proposition 4.2. Suppose U is multiplicative and I ⊆ R is an ideal not meeting U which is
maximal amongst ideals which do not meet U. Then I is prime.

Proof. Let’s look at IR[U−1], which is maximal. Its preimage in R, call it P, is prime (preim-
age of prime is always prime). But P ⊇ I, so I = P. �

What does any of this have to do with radical ideals? Well, if I ⊆ R is an ideal and
∃a /∈ I such that an /∈ I ∀n. Then there’s a prime ideal P containing I which does not a, by
the previous result. On the other hand, if an ∈ I for some n, then any prime P containing
I contains a.

Corollary 4.3. If I ⊆ R is an ideal, then { f | f n ∈ I for some n} = ⋂
P⊇I, P prime

P.

Definition 4.4. The set { f | f n ∈ I for some n} is called the radical of I, and denoted radI
or
√

I.
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Since we’ve witnessed the radical as an intersection of ideals, it is itself an ideal. The
radical of 0 is the nilradical, the set of all nilpontent elements. One result is that rad(0) =⋂

P primeP, since all primes contain (0) = 0.

Definition 4.5. R is reduced if rad(0) = (0).

Example 4.6. k[x]/(x2) isn’t radical, because rad(0) = (x)

Remark 4.7. Note that rad(0) is not in general prime. For instance, rad(0) in Z/12Z is
generated by 6, which isn’t prime.

More generally, if R is a UFD and f1, . . . , fn are irreducible elements generating distinct
ideals and g = f k1

1 . . . f kn
n with ki ≥ 1, then rad(0) in R/(g) is ( f1 . . . fn).

There’s a functor Spec that associates geometric objects to rings.

Definition 4.8. For R a ring, let Spec(R) denote the set of prime ideals of R. It has the
structure of a space when endowed with the Zariski topology - for any subset I ⊆ R, we
define V(I) := {P ∈ SpecR|I ⊆ P}. The V(I) are Zariski-closed.

Proof. a)
⋂
λ

V(Iλ) = V(∑λ .Iλ)

b) V(I) ∪V(J) = V(I ∩ J) = V(I J)
�

Since V(I) = V((I)), we restrict focus to ideals as inputs to V. In fact, amongst ideals
we can restrict focus to radicals, as V(I) = V(radI). So what does SpecR look like?
Notice that a singleton {P} in SpecR is closed if and only if P is maximal. The subset of
R’s maximal ideals is written maxSpec(R).

Example 4.9.

1) R = k[x]. Then SpecR = { f (x)| f irreducible}. If k is algebraically closed,
then these are in 1-to-1 correspondence with the elements of k. Using the fact
that k[x] is a PID and that irreducible polynomials are exactly those of the
form x− a.

2) Again assuming k = k, consider maxSpec(k[x, y]) = {(x− a, y− b)|a, b ∈ k}.
Closed points are in bijection with k2. The other points correspond to curves
defined by irreducible polynomials f (x, y). Looking at A2 = Speck[x, y]
more generally, we have that the closure of a point like f (x, y) includes all
closed points (x− a, y− b) . such that f (a, b) = 0.

It turns out that Spec is a contravariant functor from Ring to Top. A morphism φ : R→
S induces a map Spec(S) → Spec(R) by preimaging. This map is continuous because
pre-images of closed sets are closed. In particular, (Specφ)−1(V(I)) = V(φ(I)).

We’ve seen that prime ideals of R/I and R[U−1] are in correspondence with certain
subsets of SpecR.

10



Proposition 4.10. (1) The map Spec(R/I) → Spec(R) is a homeomorphism of Spec(R/I)
with V(I) ⊆ Spec(R).

(2) The map Spec(R[U−1]) → Spec(R) is a homeomorphism of Spec(R[U−1]) with {P|U ∩
P = ∅} ⊆ Spec(R).

Proof. Probably on PSet 2. �

Definition 4.11. An R-module M is Artinian if every strictly decreasing chain of submod-
ules terminates.

The definition for rings is analogous. It turns out that the Artinian property for rings is
stronger than the Noetherian.

Definition 4.12. Let M = M0 ) M1 ) · · · ) Mn be a chain of submodules of length
n. The chain is a composition series if Mn = 0 and Mj/Mj+1 is a nonzero simple module,
meaning it has no nonzero proper submodules.

Definition 4.13. The length of an R-module M is the least length of a composition series,
and ∞ if it has no finite composition series.

It’ll turn out later that we can remove the word ’least’ from the above definition, as all
composition series for a module have the same length. Note that since Mi/Mi+1 is simple,
it’s generated by any of its nonzero elements. So there’s a map R → Mi/Mi+1 sending 1
to a with kernel ann(Mi/Mi+1) = {r ∈ R|r(Mi/Mi+1) = 0}.

5. LECTURE 5 — SEPTEMBER 18, 2019

Recall that a composition series with respect to an R-module M is a chain M = M0 )
· · · ) Mn = 0 such that Mi/Mi+1 is simple.

Theorem 5.1. M has a finite composition series if and only if it is Artinian and Noetherian.

Proof. If M is Noetherian, we can find a maximal proper submodule M1, a maximal proper
submodule M2 ) M1, and so on. Because M is Artinian, this procedure terminates in
finitely many steps.

In other direction, we make use of the following claim: If M has a finite composition
series of length n then every chain of submodules has length at most n and can be refined
to a composition series. To see why, take M′ ( M a proper submodule. Then M′ =
M0 ∩M′ ⊃ M1 ∩M′ ⊃ · · · ⊃ Mn ∩M′ = 0. We can show by induction that if these are all
proper containment, M′ ⊃ M0. Suppose M = N0 ) · · · ) Nk. We want to show k ≤ n. If
n = 0, then M = 0 and we’re done. But length N1 < lengthM. By induction, k− 1 < n− 1
and we’re done. �

Now let’s look more at the Artinian property, and see what we can say about the geom-
etry of rings that are Artinian.

Theorem 5.2. For R a ring, the following are equivalent:
a) R is Noetherian and all its prime ideals are maximal.
b) R is a finite length R-module
c) R is Artinian

11



Proof.

a) =⇒ b) Suppose R of finite ideal. Let I ⊆ R be an ideal maximal with respect to the prop-
erty that R/I is not of finite length. 0 satisfies the property, and we can take such
a maximum because R is Noetherian. We’d like to show that I is prime. Take
a, b ∈ R with ab ∈ I. Consider I + (a) ⊃ I. If a /∈ I, then the containment is proper,
so R/I + (a) has finite length. So we have

0→ I + (a)/I → R/I → R/I + (a)→ 0

Notice that R/(I : a) → I + (a)/I is an isomorphism. If b /∈ I then (I : a) ) I, so
R/(I : a) has finite length. Combining composition series, we have that R/I has
finite length, producing contradiction. So I is prime and thus maximal, meaning
R/I is a field and R has finite length.

b) =⇒ c) Follows from previous theorem.
c) =⇒ a) Suppose R is Artinian. Then we claim (0) is a product of maximal ideals. Choose

a minimal ideal J with respect to the ideal being a product of maximal ideals - this
exists by the Artinian property. Then for any maximal m ⊆ R, mJ = J. So J ⊆ M,
and J2 = J.

Now choose an ideal I minimal among ideals not annihilating J. Then (I J)J =
I J2 = I J 6= 0. But I J ⊆ I, so by minimality of I, I J = I (since I J fails to annihilate
J). Now choose f ∈ I such that f J 6= 0. By minimality, ( f ) = I. Since I J = I,
∃g ∈ J such that f = f g, meaning f (1− g) = 0. g is in e very maximal ideal, so
1− g is in none (you could add them and get 1, generating the whole ring). Then
1− g is a unit, so f = 0 and J = 0.

So the claim is proven, and we have (0) = m1 . . . mt for mi maximal. For any s,
(m1 . . . ms)/(m1 . . . ms+1) is a vector space over R/ms+1. Any descending chain of
subspaces corresponds to a chain of ideals in R, which is finite, so the vector space
is finite-dimensional. Putting together the composition series for m1/m1m2, m1m2/m1m2m3, . . .
we get a finite composition series for R. So R has finite length, and it’s Noetherian.

Now suppose that P is prime. Then it contains 0 = m1, . . . , mt. So P contains one
of these maximal ideals, and it’s that maximal ideal itself. So every maximal ideal
is one of the mi, and there are only finitely many maximal ideals.

�

Corollary 5.3. Artinian rings are Noetherian. In addition, R is Artinian =⇒ specR is finite.

Now what does this all mean geometrically? If we take R to be a k-algebra with k = k
(e.g. k[x1, . . . , xn]/I). Then R ∼= k` as k-vector spaces and ` equals the length of R, as well
as the number of points of specR (up to multiplicity).

12



Example 5.4. (1) If R = k[x, y]/(x, y), then specR = 0 and R has length 1, corre-
sponding to R ⊃ (0).

(2) If R = k[x]/(x(x − 1)), then specR = {(x), (x − 1)}. Here R is generated
as a k-vector space by 1 and x. So R ∼= k2 and it has composition series
R ) (x) ) (0).

(3) Let R = k[x, y]/(x, y2). Then specR = {(x, y)}, but R ∼= k2 (generated by 1
and y), and R has the composition series R ) (y) ) (0).

The takeaway from the above examples is that spec doesn’t tell us everything about the
ring. Roughly speaking, specR corresponds to a ”scheme-y” point.

6. LECTURE 6 — SEPTEMBER 23, 2019

Today we’ll talk about associated primes. The motivation is that for n ∈ Z, we can
exhibit a prime factorization n = ±pd1

1 . . . pdt
t . In fact, in Z, (n) = (pd1

1 ) ∩ · · · ∩ (pdt
t ). The

”associated primes” of the ideal (n) in this case are the (pi) and the primary components
are the (pdi

i ). Over Z, the Fundamental Theorem of Arithmetic tells us that the primes
and primary components are unique. Over uglier rings, we don’t always get unique fac-
torization but we can hope to somehow extend this kind of thinking.

As always, let’s try to pull this back to geometry. Take R = k[x1, . . . , xn], I ⊆ R an ideal.

Definition 6.1. V(I) is reducible if it can be written V(I) = V(I1) ∪ V(I2) where V(I) 6=
V(Ii). Otherwise, it’s irreducible.

Proposition 6.2. V(I) is irreducible if and only if
√

I is prime.

Proof. If V(I) = V(
√

I) = V(I1) ∪ V(I2), then primeness of
√

I means it’s in, say, V(I1).
Then V(I1) ⊃ V(

√
I), and in fact they’re equal.

If
√

I is not prime, then f g ∈
√

I for f , g /∈
√

I. For P ∈ V(
√

I), f ∈ P or g ∈ P.
Then V(

√
I) = V(

√
I, f ) ∪ V(

√
I, g). Neither of the sets on the RHS equal V(

√
I), since

f , g /∈
√

I = ∩P⊃I primeP. �

We’ll see that
√

I can be written as a finite intersection of primes uniquely, correspond-
ing to writing V(I) as the union of irreducible sets.

Example 6.3. Consider I = (x2, xy) ⊆ k[x, y]. V(I) = V(x2) ∩ V(xy). We’ll see
that the associated primes are (x) and (x, y). We also have that I = (x) ∩ (x2, y) =
I(x) ∩ (x2, xy, y2). Note that we can’t write I uniquely as the intersection of ideals
generated by powers of primes, like we could over Z.

Definition 6.4. Let R be a ring and M an R-module. A prime P of R is associated to M if
there’s some x ∈ M such that P = ann(x) = {r ∈ R : rx = 0}.

The set of all primes associated to M is denoted AssR(M) or AssM if the ring is clear.
Sometimes the associated primes of R/I over R are called associated primes of I.
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Remark 6.5. If P ∈ AssM, then P = ann(x) and the map R → M which multiplies by
r has kernel P, so R/P is a sumbodule of M. Conversely, if P is prime such that there’s
an inclusion of modules R/P → M, then P is the annihilator of the image of 1. In short,
P ∈ AssM if and only if R/P is isomorphic to a submodule of M.

Theorem 6.6. Let R be a Noetherian ring and m 6= 0 a finitely generated R-module. Then
a) AssM is finite and non-empty. It includes all primes minimal among those containing

annM.
b) The union of all associated primes equals the zero divisors on M (including 0 itself).
c) Taking associated primes commutes with localizing. In particular,

AssR[U−1]M[U−1] = {PR[U−1]|P ∈ AssM, P ∩U 6= ∅}

How do we know that we can find primes minimal over an ideal? Let {Qi} be a chain
of prime ideals containing I. If ab ∈ ∩Qi, then one of a or b is in all the Qi, so ∩Qi is prime.
So Zorn’s lemma implies that there exist minimal primes over I. Note that this holds over
arbitrary rings.

Definition 6.7. The primes in the associated primes that are not minimal are called embed-
ded primes of M. If M = R/I, then if P is an embedded prime of M in R, V(P) is called an
embedded component of Spec(R/I). If P is a minimal associated prime in R, then V(P) is an
isolated component of Spec(R/I).

Example 6.8. I = (x2, xy) ⊆ R = k[x, y]. What is Ass(R/I)? The only nonzero
elements annihilated are multiples of x or y. So ann(x) = (x, y) and ann(y) = (x).
Then AssR(R/I) = {(x), (x, y)}.

Theorem 6.9 (Prime avoidance). Let J, I1, . . . , In be ideals in R. Suppose J ⊆ ∪j Ij. If R contains
an infinite fields or at most two of the Ij are not prime, then J ⊆ Ij for some j.

Proof. First suppose R contains an infinite field k. Then R is a k-vector space, so J is a
k-vector space, and if it’s contained in the union of finitely many subspaces it must be in
one of them.

If at most two Ij are not prime, we induct on n. If n = 1, we’re done. By induction, if J
is in any smaller union of the Ij, we’re set. So assume instead that J is in no smaller union.
Then for each i, there exists xi ∈ J such that xi ∈ Ii but xi /∈ Ij for any j 6= i. If n = 2, then
x1 + x2 is not in I1 or I2, which is a contradiction. If n > 2, then at least one the Ij is prime,
say it’s I1. Then consider x1 + x2x3 . . . xn. The second term is not in I1, because none of its
terms are, and it’s also not in any of the Ij (because then x1 ∈ Ij). So the term is not in any
of the Ii, a contradiction. �

What’s implied is that if I is not contained in any of a finite number of primes, there
exists an x ∈ I that ’avoids all of the primes’ (i.e. it’s not in their union).

Corollary 6.10. Let R be Noetherian, I ⊆ R an ideal, and M 6= 0 a finitely generated R-module.
Either I contains a nonzero divisor on M or I annihilates an element of M.
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Proof. If I is in the union of associated primes, it’s equal to an annihilator. Otherwise, it
contains a nonzero divisor on M. �

Proposition 6.11. Let R be a ring and M 6= 0 an R-module. If I ⊆ R is maximal among ideals
of R that are annihilators of elements of M, then I is prime. In particular, if R is Noetherian then
AssM 6= ∅.

Proof. Consider ab ∈ I. Say I = ann(x). Suppose b /∈ I. Then bx 6= 0, but abx = 0. So
(I, a) ⊆ ann(bx). By maximality, a ∈ I so I is prime. �

This proves part b) of the theorem, because every zero divisor lives in some associated
prime. Recall that we showed that 0 = x ∈ M if and only if x 7→ 0 in Mm for all maximal
ideals m ⊆ R. We can say something slightly stronger when R is Noetherian.

Corollary 6.12. R Noetherian, M an R-module. If x ∈ M then x = 0 if and only if x
1 = 0 in each

Mp for maximal associated primes P.

Proof. We’ve proven the forward direction. Now suppose x 6= 0. Then since R is Noe-
therian, there exists a prime P ∈ AssM that’s maximal among annihilators of elements
containing ann(x). Then x

1 6= 0 in Mp. �

7. LECTURE 7 — SEPTEMBER 25, 2019

We’re interested in how associated primes behave in short exact sequences (SES), since
SES can show up a lot.

Lemma 7.1. Let R be Neotherian. If

0→ M′ → M→ M′′ → 0

is a SES of R-modules, then AssM′ ⊆ AssM ⊆ AssM′′ ∪AssM′.

Proof. The first containment is clear. For the second, let P ∈ AssM \ AssM′. Then P =
ann(x) for an x ∈ M and Rx ∼= R/P. For 0 6= y ∈ R/P, ay = 0 ⇐⇒ a ∈ P, since P is
prime. So every nonzero element of Rx has annihilator P. So Rx ∩M′ = 0, and thus Rx is
isomorphic to its image in M and P ∈ AssM. �

Proposition 7.2. If R is Noetherian and M a finitely generated R-module, then M has a filtration

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

with each Mi+1/Mi
∼= R/Pi for some prime Pi.

Proof. Since R is Noetherian, if M 6= 0 then AssM 6= 0. Let P1 ∈ AssM. There exists a
submodule M1

∼= R/P1. Repeating with M/M1 gives us M2, and so on. The procedure
terminates because N is Noetherian. �

Recall parts a) and c) of our big theorem from last time. Under the assumption that R is
Noetherian and M 6= 0 a finitely generated R-module, we saw that

a) AssM is finite, non-empty, each containing ann(M), and it includes all primes min-
imal among those containing annM.

c) If U is multiplicatively closed, then AssR[U−1]M[U−1] = {PR[U−1]|P ∈ AssM, P ∩
U 6= ∅}
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Proof of c). If P ∈ AssM, P ∩U 6= ∅, then R/P → M is an injection. Localizing, we get an
injection R[U−1]/PR[U−1] → M[U−1]. We’re using the fact that localization commutes
with quotients. So it follows that PR[U−1] is prime and thus PR[U−1] ∈ AssM[U−1].

Conversely, if Q ∈ AssM[U−1], we can write Q = PR[U−1] for some prime P of R with
P∩U 6= ∅. Agh I got lost here. At some point we used the fact that localization commutes
with Hom. �

Proof of a). For finiteness, we can find 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M with Mi+1/Mi
∼=

R/Pi for some Pi prime. We induct on the length of the filtration. When n = 1, M = R/P1
... agh I also zoned out here :( �

Now we’ll talk about primary decomposition, and look to bring some geometric intu-
ition into things. Classically, primary decomposition is defined for ideals in rings, but it
can be defined more generally for arbitrary modules (and that’s what we’ll do).

Definition 7.3. A submodule N ⊆ M is primary if Ass(M/N) consists of one element, P.
In this caes, N is P-primary. On the other hand, M is coprimary if 0 ⊆ M is primary, i.e.
|AssM| = 1.

Proposition 7.4. If P ⊆ R is prime and N1, . . . , Nt ⊆ M is a collection of R-modules, then if
each Ni is P-primary in M, then ∩Ni is P-primary.

Proof. Induction allows us to assume t = 2 (whittle down the intersection in parts). Then
M/(N1 ∩ N2) ↪−→ M/N1 ⊕ M/N2. So the associated primes of the LHS lives in those of
the RHS. But those on the RHS are just the union of those associated to M/N1 and to
M/N2. That comes out to just P. Since Ass of the LHS isn’t empty, it’s P. So N1 ∩ N2 is
P-primary. �

Proposition 7.5. Let P ⊆ R be prime. The following are equivalent.
a) M is P-coprimary
b) P is minimal over annM and every element not in P is a nonzero zero-divisor on M
c) A power of P annihilates M and every element not in P is a non-zero zero divisor on M.

Proof. a) =⇒ b): {P} = AssM, so it must be minimal over annM. Then P consists of all
zero divisors on M, including 0. �

Note that if M = R/I for some I 6= 0, then I is P-primary if and only if a power of P is
in I and ∀r, s ∈ R such that rs ∈ I, r /∈ P implies s ∈ I.

Example 7.6. (x2, y) is (x, y)-primary, but it’s not (x)-primary.

8. LECTURE 8 — SEPTEMBER 30, 2019

Last time we talked about what it means for a submodule to be primary. For the rest of
the lecture, R is Noetherian and M 6= 0 is a finitely generated R-module. Recall that N ⊆
M is P-primary if Ass(M/N) = {P}. We also saw that M is P-coprimary if Ass(M) =
{P}. We showed that the the following are equivalent:

1) M is P-coprimary
16



2) P is minimal over ann(M) and every element not in P is a non-zero divisor in M.
3) A power of P annihilates M and every element not in R is a non-zero zero divisor

on M.
Notice that 2) implies that M is P-coprimary if and only if P is minimal over ann(M)

and M ↪−→ Mp. So if M is any module and P is minimal over ann(M), then M′ =
ker(M → Mp) is P-primary since M/M′ ↪−→ Mp = (M/M′)p. In this case, M′ is the
P-primary component of 0 in M.

Example 8.1. I = (x2y) ⊆ k[x, y], M = k[x, y]/I. The minimal primes in k[x, y] over
annM = I are (x) and (y). And ker(M → M(x)) = { r

u |vr = 0, v /∈ (x)} = (x2).
Similarly, ker(M→ M(y)) = (y). And (x2y) = (x2) ∩ (y), though this won’t always
be the case.

Example 8.2. Take I = (x2, xy) and M = k[x, y]/I. The only minimal prime over I
is (x), and ker(M→ M(x)) = (x), but this time I 6= (x).

Note that our theorem says that when I is P-primary, P is minimal over I and thus√
I ⊆ P. We also have that I being P-primary means Pn ⊆ I for some n, and P ⊆

√
I.

Then P =
√

I. However, our previous example demonstrates that the converse is false - I
need not be primary only because its radical is prime.

Theorem 8.3. Any proper submodule M′ ( M is the intersection of finitely many primary sub-
modules. If P1, . . . , Pn are prime and M′ = ∩n

i=1Mi with Mi Pi primary, then
a) Every associated prime of M/M′ occurs among Pi.
b) If the intersection is irredundant (i.e. no Mi can be dropped), then the Pi are exactly the

associated primes (perhaps repeated).
c) If the intersection is minimal (i.e. no intersection with fewer terms), then each associated

prime of M/M′ is equal to exactly one Pi.
And if Pi is minimal over the annihilator of M/M′, then Mi is the P-primary component of 0 in
M′.

Proof. N ⊆ M is irreducible if N is not the intersection of two strictly larger submodules.
By the ascending chain condition, every submodule can be written as the intersection of
finitely many irreducible submodules.

So we can write M′ = ∩Mi with each Mi irreducible. If Mi isn’t primary, then there
exists P and Q distinct associated primes of M/M′. Then R/Q and R/P inject into M/M′.
The annihilator of every element of R/P is P and of R/Q is Q.

Then the images of R/Q and R/P don’t intersect in M/Mi (or rather they intersect only
at 0). Then 0 is reducible and Mi is reducible and thus primary.

So we have a primary decomposition. To show a) through c), we factor out M′ and
assume M′ = 0. For part a), we take 0 = ∩Mi a primary decomposition. Then M =
M/ ∩ Mi → ⊕M/Mi is an injection since m 7→ 0 if and only if m ∈ Mi if and only if
m = 0. So AssM ⊆ ∪AssM/Mi = {Pi}.
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For b), we have ∀j, ∩i 6=jMi 6= 0. Then if A∩i 6=j and B = Mj, A ∩ B = 0. The second
isomorphism theorem gives us that

A = A/A ∩ B ∼= (A + B)/B ⊆ M/B = M/Mj

So Mj is Pj-primary, and M/Mj is Pj-coprimary. We have that AssA ⊆ AssM and thus Pj ∈
AssM. We’re making use of the fact that the set of associated primes can’t be empty, and
results about how associated primes behave in SES. The proof of c) is a bit of a pain. �

What do localizations tell us about primary decompositions? Suppose we have a mini-
mal decomposition M′ = ∩n

i=1Mi and {Pi} are the corresponding primes. Let U ⊆ R be a
multiplicatively closed set and reindex so that P1, . . . , Pt are the Pi not meeting U.

Proposition 8.4. M′[U−1] = ∩t
i=1Mi[U−1] is a minimal primary decomposition over R[U−1].

Proof. Again we factor out M′ and reduce to the case M′ = 0. If U ∩ Pi 6= ∅ then
Ass(M/Mi)[U−1] = {PiR[U−1]} so Mi[U−1] is PiR[U−1]-primary. If U ∩ Pi 6= ∅, then
(M/Mi)[U−1] = 0 and Mi[U−1] = M[U−1]. Then ∩t

i=1Mi[U−1] = 0 is a primary decom-
position. Since the associated primes of M[U−1] are those in AssM which don’t meet U,
this decomposition is minimal. �

9. LECTURE 9 — OCTOBER 2, 2019

We’ve seen that modules can be written as intersections of primary submodules. Now
let’s look at primary decomposition in UFDs.

Proposition 9.1. Let R be Noetherian and an integral domain.
a) If f ∈ R and f = u ∏ pei

i with u a unit and each pi a prime generating distinct ideals,
then ( f ) = ∩(pei

i ) is a minimal primary decomposition.
b) R is a UFD if and only if every prime ideal minimal over a principal ideal is principal.

Proof. a) First we show that (pei
i ) is (pi)-primary. Clearly a power of (pi) annihilates

R/(pei
i ). If r ∈ R \ (pi) and m ∈ R/(pei

i ) such that rm = 0, then pei
i |rm. Since pi

doesn’t divide r, we have that m = 0.
Clearly ( f ) ⊆ ∩(pei

i ). To show the opposite direction, we induction on the num-
ber of indices n. If n = 1, the result is clear. For the inductive step, we show
(g) ∩ (pe1

1 ) ⊆ ( f ), where g = u ∏i 6=1 pei
i . Let r = gq ∈ (pe1

1 ) live in the intersection.
Then, since p1 doesn’t divide g1, p1 | q, so pe1

1 | q and thus r ∈ ( f ).
b) If f = u ∏i pi is the prime factorization of f then, by part a), the associated primes

of R/( f ) are (pi). So every prime minimal over ann(R/( f )) = ( f ) is principal.
Conversely, suppose prime ideals minimal over principal ideas are principal. Then
if all irreducibles are prime, factorizations are unique. If P is minimal over ( f ),
then P = (p) and f = pu. Since f is irreducible, u is a unit and ( f ) = (p), meaning
f is prime.

�

1We use the fact that the primes generate different ideals.
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Now some geometric intuition behind the primary decomposition. In the following
examples, we take k to be algebraically closed.

Example 9.2. Let I = (x2, y) ⊆ k[x, y]. Then V(I) = {(x, y)} – at the level of
sets, it’s just a point. Any f = a0 + a1x + a2y+ a3x2 + . . . has residue a0 + a1x
mod I. So modding preserves a0 = f (0, 0) and a1 = ∂ f

∂x (0, 0).
If J = (x2, xy, y2), we get the same V(J), since J ⊆

√
I and V(I) = V(

√
I).

But this time the residue of a polynomial f in k[x, y]/J gives us the value of
f at 0 and its derivatives in any direction. So V(J) can be thought of as the
whole first order infinitesimal neighborhood of the origin.

If K = (x2), then the residue of f in R/K gives us the value of f at every
point on the line x = 0, along with values of the derivative in the horizontal
direction.

If L = (x2, xy) = (x) ∩ (x2, xy, y2), V(L) corresponds to the union of the
vertical line and the first order infinitesimal neighborhood at the origin. Since
we have the vertical line, the only additional information from the neighbor-
hood is that of the horizontal direction.

We’d like to generalize some results from linear algebra to modules. The first result
we’ll look at is Cayley-Hamilton.

Theorem 9.3 (Cayley-Hamilton (classic)). A matrix A on a finite-dimensional vector space
satisfies its characteristic polynomial p(x) = det(x1− A).

The more general result is the following:

Theorem 9.4 (Cayley-Hamilton (general)). Let R be a ring, I an ideal, and M an R-module
generated by n elements. Let φ : M → M be a map with φ(M) ⊆ IM. Then there exists a monic
polynomial p(x) = xn + p1xn−1 + · · ·+ pn with pj ∈ I j and p ◦ φ = 0 as an endomorphism on
M.

Proof. Let m1, . . . , mn be generators for M. Then φ(mi) = ∑ aijmj for aij ∈ I. Let A = (aij).
Then we can treat M as an R[x]-module by setting xa = φ(a). Set m = (m1 . . . mn). Then
(x1)m = Am and (x1− A)m = 0. Recall that if B is a matrix of cofactors of (x1− A), then
B(x1− A) = det(x1− A)1.

So det(x1− A)1m = 0 and det(x1− A)mi = 0 for all i. Then det(x1− A) annihilates
M, and p(φ) = 0. Since the aij are in I, it’s straightforward that the coefficients are in the
correct powers of I. �

Definition 9.5. For R a ring, an R-module F is free with free basis B ⊆ F if every element of
F is uniquely an R-linear combination of elements of B. Equivalently, F ∼= ⊕b∈BRb ∼= R|B|.

Corollary 9.6. For R a ring and M a finitely generated R-module,
a) If α : M→ M is surjective, it’s an isomorphism.
b) If M ∼= Rn, then any set of n elements generating M is a free basis. So the rank of M is

well-defined.
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10. LECTURE 10 — OCTOBER 7, 2019

We’ve been talking about primary decomposition and associated primes for a while -
now we’re going to shfit directions a bit. Last time we saw generalized Cayley-Hamilton
for modules and talked about free modules. We states the following corollary, which we’ll
now prove.

Corollary 10.1. For R a ring and M a finitely generated R-module,
a) If α : M→ M is surjective, it’s an isomorphism.
b) If M ∼= Rn, then any set of n elements generating M is a free basis. So the rank of M is

well-defined.

Proof. a) Let M be an R[t]-module where tm := α(m). If I = (t), then α is surjective
and IM = M. Applying Cayley-Hamilton with the identity, we see that there’s a
polynomial p(x) = xn + p1xn−1 + · · ·+ pn such that p(id)M = 0 and pi ∈ (t)i. So
pi = aiti for some ai ∈ R, and

(1 + a1t + · · ·+ antn)M = 0

(1 + t(a1 + a2t + . . . ))M = 0

(1 + q(t)t)M = 0

(−q(α))α = id

So −q(α) is an inverse to α and α is an isomorphism.
b) Choose generators m1, . . . , mn for M. Define β : Rn → M by sending each basis

element to an mi. Choose an isomorphism γ : M → Rn. Then βγ : M → M is
surjective, so by (a) it’s an isomorphism. Then (βγ)γ−1 = β is an isomorphism, so
the mi are linearly independent and thus form a basis.

�

If p ∈ R[x], we can think of R[x]/(p) as isomorphic to R[a] with x 7→ a. We’ve sort of
forced a to be a root of p in R. For instance, when we localize at {1, a, a2, . . . }, this is the
same as taking R[x]/(ax − 1), because demanding that ax = 1 have a root amounts to
giving a an inverse.

Proposition 10.2. Let R be a ring and J ⊆ R[x] an ideal. Let S = R[x]/J and s = x ∈ S.
a) S is generated by at most n elements as an R-module if and only if it contains a monic

polynomial of degree at most n, in which case it is generated by {1, s, . . . , sn−1}.
b) S is a finitely generated free module if and only if J is generated by a monic polynomial.

And {1, s, . . . , sn−1} is a free basis.

Proof. Omitted. �

Definition 10.3. An R-algebra S is a ring along with a map φ : R→ S.

The additional structure on S is that it admits scaling by R through φ. So in this way S
is also naturally an R-module, and we can write rs to mean φ(r)s. Often times we’ll care
about the case in which φ is an injection, so R naturally sits in S, or in which φ is a quotient
map, so S = R/I.
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Definition 10.4. S is finitely generated as an R-algebra if there exist v1, . . . , vn ∈ S such that
S is the ring generated by φ(R) and v1, . . . , vn.

Definition 10.5. s ∈ S is integral over R if it’s the zero of some monic polynomial in R[x].
If every element of S is integral over R, then we say S is integral over R.

Definition 10.6. The set of elements in S integral over R is called the integral closure of R
in S.

If R is an integral domain, its integral closure (or normalization) is its integral closure
inside of its field of fractions. Note that being finitely generated as an R-algebra is much
weaker than being finitely generated as an R-module. We’ll say that an R-algebra S is
finite over R if it’s finitely generated as an R-module.

Example 10.7.

1) R[x] is a finitely generated R-algebra, but it’s not finite or integral over R.
2) R[x]/(x2) is finite and integral over R.
3) Q[

√
2, 3
√

2, 4
√

2, . . . ] is integral over Q but not finite over Q.

Proposition 10.8. An R-algebra S is finite over R if and only if S is generated as an R-algebra by
finitely many integral elements.

Proof. Suppose S is finite over R. Then for s ∈ S, multiplication by s is a map S → S, and
Cayley-Hamilton shows that s satisfies a monic polynomial. Conversely, if S is generated
as an R-algebra by t elements, let S′ ⊆ S by the algebra generated by t− 1 of them. By
induction, we have that S′ is finite over R. Say it’s generated by some {si}. The remaining
(algebra) generator of S, say s, is integral over R by assumption and thus integral over
S′. So there’s a surjection S′[x]/(p) → S ∼= S′[x]/I with x 7→ x where p is monic and
p(s) = 0. Since p ∈ I, there’s a finite set of generators for S as an S′ module, say {ti}.
Thus S is generated by {sitj} as an R-module. �

Proposition 10.9. If S is an R-algebra and s ∈ S then s is integral over R if and only if there
exists an S-module N and a finitely generated R-module M ⊆ N not annihilated by any nonzero
element of S such that sM ⊆ M.

We’ll prove the proposition next time, but for now we’ll examine a nice corollary as-
suming the proposition.

Corollary 10.10. S is integral if and only if R[S] is a finitely generated R-module.

Proof. If S is integral, then R[S] is finite over R. Set N = R[S], M = R[S]. If I ∈ R[S] is not
annihilated by any element of R[S] then s is integral over R. �

11. LECTURE 11 — OCTOBER 9, 2019

Last time we stopped at the follow proposition:
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Proposition 11.1. If S is an R-algebra and s ∈ S then s is integral over R if and only if there
exists an S-module N and a finitely generated R-module M ⊆ N not annihilated by any nonzero
element of S such that sM ⊆ M.

Proof. First assume that s is integral over R. Then let N = S and M = R[s] ⊆ S. Then
M ∼= R[x]/I, since there’s a surjection from R[x] to M. I contains some monic polynomial
satisfied by s, so M is finite over R.

For the converse, let φ : M → M be multiplication by s. Applying Cayley-Hamilton
with I = R, we have a monic polynomial p(x) with coefficients in R such that p(s)M = 0.
Then p(s) = 0 and s is integral over R. �

Theorem 11.2. Let S be an R-algebra. Then the set of elements of S integral over R forms a
subalgebra of S.

Proof. We need to show closure under addition and multiplication. R[a, b] is finite over R.
If s = ab or a + b, set N = S and M = R[a, b]. M isn’t annihilated by any element of S with
sM ⊆ M so s is integral over R. �

Corollary 11.3. Let M be a finitely generated R-module and I an ideal of R such that IM = M.
Then there exists an r ∈ I acting as the identity on M, i.e. (1− r)M = 0.

Proof. Let φ = id. There exist p1, . . . , pn such that pj ∈ I j ⊆ I such that (1 + p1 + · · ·+
pn)M = 0. Set R = p1 + · · ·+ pn. �

Definition 11.4. The Jacobson radical of a ring R is the intersection of all the maximal ideals
in R.

So the Jacobson radical contains the nilradical, but in general they’re not the same.

Lemma 11.5 (Nakayama’s Lemma). Let I be an ideal contained in the Jacobson radical of R. Let
M be a finitely generated R-module.

a) If IM = M, then M = 0.
b) If m1, . . . , mn ∈ M have images in M/IM that generate it as an R-module then m1, . . . , mn

are generators for M as an R-module.

Proof. a) By the previous corollary, we have that there exists an r ∈ I such that (1−
r)M = 0. But r is in every maximal ideal, so 1− r is in no maximal ideal. Then
1− r is a unit, and (1− r)M = 0 means M = 0.

b) Let N = M/(∑ Rmi). Then N/IN = M/(IN + ∑ RMi) = 0. M = IN so N = 0
and M = ∑ Rmi.

�

Corollary 11.6. If M and N are finitely generated R-modules and M⊗R N = 0 then annM +
annN = R. If R is local, M or N is zero.

Proof. First assume R is local and M 6= 0. If P is the maximal ideal, it equals the Jacobson
radical and Nakayama gives us M/PM 6= 0, because PM 6= M. This is an R/P-vector
space, so there’s a surjection M/PM → R/P. So M⊗ N = 0 and it surjects on to R/P⊗R
N ∼= N/PN. Then N = PN and N = 0.
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If R isn’t local, suppose annM + annN 6= R. Find some prime P containing annM and
annN. Then Mp ⊗Rp Np = 0, and without loss of generality we may assume Mp = 0.
Then there exists an element not in P which annihilates each generator of M. The product
annihilates M, producing contradiction. �

Now recall that an integral domain is normal if it’s integrally closed in its field of frac-
tions. Interestingly, integrality and normality are connected to unique factorization. In
particular, unique factorization implies normality.

Proposition 11.7. R is a UFD implies R is normal.

Proof. Consider r
s in the field of fractions of R. We may assume they’re relatively prime.

Suppose

p(
r
s
) = (

r
s
)n + a1(

r
s
)n−1 + · · ·+ an = 0

Then rn = s(−a1rn−1 − · · · − ansn−1) so s | rn. Then s is a unit in R and r
s ∈ R. �

A corollary to this is that the only rational solutions to monic polynomials over Z are in
Z.

Proposition 11.8. If f factors in S[x] as f = gh for g and h monic, then the coefficients of g and
h are integral over R.

Proof. Let R[x]/(g) = R[α1] via x 7→ α1 for α1 a root of g. Using long division, we have
that g = (x− α1)g1 over R[α1]. Repeating with g1, we get a ring T ⊇ S and elements αi, β j
of T such that g = ∏(x− αi) and h = (x− β j) in T[x]. So the αi and β j are integral over
R, and their coefficients are also integral over R. �

Corollary 11.9. If R is normal, then any monic irreducible polynomial is prime.

Proof. Let Q be the field of fractions. If f = gh in Q[x] then g, h ∈ R[x] and f is irreducible
in Q[x]. Since Q is a field, Q[x] is a UFD, so its irreducibles are prime and ( f ) ⊆ Q[x]
is prime. Then R[x]/( f ) is free over R and we have a map R[x]/( f ) → Q⊗ R[x]/( f ) =
Q[x]/( f ) via g 7→ 1⊗ g. This is the direct sum of maps R → Q⊗R R = Q, since Q⊗R
R⊕n ∼=

⊕
(Q⊗ R). Then the map injects and R[x]/( f ) is an integral domain, meaning ( f )

is prime. �

12. LECTURE 13 — OCTOBER 21, 2019

Today we’re going to prove the big theorem - Nullstellensatz. Recall that we’ve talked
about Jacobson rings, which are rings in which all prime ideals are intersections of maxi-
mal ideals. It might be hard to see why that’s a useful property, but today we’ll connect it
to localizations.

Lemma 12.1. The following are equivalent:
a) R is Jacobson
b) If P ⊆ R is prime and S = R/P contains b 6= 0 such that S[b−1] is a field, then S is a

field.
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Proof. If R is Jacobson, then S is Jacobson (lift, intersect, then project). S is an integral
domain so (0) is prime. Then the Jacobson radical in S (intersection of all maximal ideals)
is 0. Since S[b−1] is a field, only (0) is prime. So the only prime ideal in S avoiding the
multiplicative set generated by b is (0). So any other prime ideal in S contains b. So 0 must
be maximal in S, and S is a field.

In the other direction, let Q ⊆ R be prime, and let I be the intersection of all maximal
ideals containing Q. We’d like to show I = Q. Suppose not, so there exists f ∈ I \ Q.
Now we select a prime P maximal among primes containing Q but not f (Zorn’s). P isn’t
maximal in R, so R/P isn’t a field. But by construction, PR[ f−1] is maximal in R[ f−1], and
R[ f−1]/PR[ f−1] = (R/P)[ f−1]. So R/P is a field, producing contradiction. Then I = Q
and R is Jacobson. �

Now back to Nullstellensatz!

Theorem 12.2 (Nullstellensatz). Let R be a Jacobson ring.
a) If S is a finitely generated R-algebra, then S is Jacobson.
b) If N ⊆ S is maximal, then M = N ∩ R is maximal in R, and S/N is a finite extension of

R/M.

Proof. The proof isn’t so complicated, but it’s pretty long. We first suppose that R is a field
and S = R[x]. Then S is a PID (nonzero primes are maximal), so we just need to show
that (0) is the intersection of prime ideals. Since no polynomial can have infinitely many
irreducible factors, we just need to show that S has infinitely many prime ideals. If there
are only finitely many irreducible polynomials f1, . . . , fn then ∏ fi + 1 has positive degree
(so it’s not a unit) and it has no prime factors, giving us a new prime. So S has infinitely
many nonzero prime ideals (which are maximal) so (0) is the Jacobson radical.

Now to part (b), again restricting to S = R[x]. If N ⊆ S is maximal then N = ( f ) for
some irreducible, monic polynomial. Then R∩ N = (0). The only maximal ideal of S/( f )
has dimension deg( f ) over R so it’s finite over R.

Now let R be a Jacobson ring and suppose S is generated (as an R-algebra) by a single
element. We’ll prove in this case and then induct over the size of the generating set. For
(a), we want to show that if P ⊆ S is prime and S′ = S/P contains b 6= 0 with S′[b−1] a
field, then S′ is a field. By the previous lemma, this will suffice to show that S is Jacobson.
We now set R′ = R/R ∩ P. This injects into S′. Replace S by S′ and R by R′, an integral
domain contained in S. We’d like to show that if S[b−1] is a field then so is S. In fact, we’ll
show that R is a field in this case too, and S is a finite extension of R.

For the second statement, we make the same reduction and assume S is a field. We then
want that R is a field over which S is finite. So the same proof applies in both cases. S is
generated by a single element T over R, and we write S = R[x]/Q for some prime Q such
that t is the image of x in S. We first claim Q 6= 0. Otherwise, there exists b ∈ R[x] such
that R[x][b−1] is a field, by hypothesis. If K is the field of fractions of R, then (K[x])[b−1] is
also a field, meaning K[x] must be a field. But it’s not, producing contradiction.

So Q from earlier is not zero. S[b−1] = (R[x]/Q)[b−1] is a field, so S[b−1 = (K[x]/QK[x])[b−1],
but K[x]/(QK[x]) is already a field (since K[x] is a PID), so S[b−1] = K[x]/(QK[x]). And
it’s finite dimensional over K because Q has finite degree. Now take some 0 6= p(x) ∈ Q.
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Since S = R[x]/Q, we have p(t) = pntn + · · · + p0 = 0 in S. Inverting pn, we get that
S[p−1

n ] is integral over R[p−1
n ]. b also satisfies an equation with coefficients in R: q(b) =

qmbm + · · ·+ q0 = 0. We can assume q0 6= 0. Then (1
b )

m + ( q1
q0
)(1

b )
m−1 + · · ·+ ( qm

q0
) = 0 by

dividing by q0bm.
Thus S[b−1] is integral over R[(pnq0)

−1]. Since S[b−1] is an integral domain, R[(pnq0)
−1]

is a field. Since R is Jacobson, it’s is a field (by the lemma). So S[b−1] is integral over R,
meaning S is, and thus S is a field (by corollary from a previous section). And S is finite
over R since it’s integral and generated by a single element as an R-algebra.

Finally, we induct on the number of generators of S as an R-algebra, r. We can assume
r > 1 and that the statement holds for algebras generated by fewer than r elements. Let
S′ ⊆ S be the algebra generated by r− 1 of the generators. By induction, S′ is Jacobson. S
is generated by one element as an S′ algebra, so S is Jacobson. If N ⊆ S is a maximal ideal,
then N ∩ S′ is maximal, so N ∩ S′ ∩ R = N ∩ R is by induction.

R/(R ∩ N) ⊆ S′/(S′ ∩ N) and S′/(S′ ∩ N) ⊆ S/N are finite. So R/(R ∩ N) ⊆ S/N is
finite by transitivity. �

13. LECTURE 14 — OCTOBER 23, 2019

Today we’ll finish up Nullstellensatz by considering its geometric applications. In order
to do that, we’ll need to discuss some classical algebraic geometry.

Let k be a field.

Definition 13.1. If { fi} ⊆ k[x1, . . . , xn], then Z({ fi}) = {a = (a1, . . . , an)| fi(a) = 0 ∀i}.
This is called an algebraic set in kn (written An).

Definition 13.2. Let X ⊆ kn = An. Then I(X) = { f ∈ k[x1, . . . , xn]| f (p) = 0 ∀x ∈ X}.
Some things to check:
• Z({ fi}) = Z(I) = Z(

√
I) for I = ( fi)i.

• I(X) is a (radical) ideal, and Z(I(Z(J))) = Z(J) for any ideal J ⊆ k[x1, . . . , xn].

For now we’ll write R = k[x1, . . . , xn]. Note that if (a1, . . . , an) ∈ An, then the map
xi 7→ xi − ai is an isomorphism on R. So it induces an isomorphism R/(x1, . . . , xn) →
R/(x1 − a1, . . . , xn − an). The evaluation map ev0 : R → k which sends f to f (0, . . . , 0) is
a surjection with kernel (x1, . . . , xn).

So (x1 − a1, . . . , xn − an) is always a maximal ideal. Then there’s a map of sets which
injections An → Spec(R) with image contained in the set of maximal ideals. By definition,
if X = Z(I) ⊆ An then (a1, . . . , an) ∈ X if and only if f (a1, . . . , an) = 0 ∀ f ∈ I. But this
holds if and only if (x1 − a1, . . . , xn − an) ∈ V(I). So the algebraic sets of An correspond
to the closed sets of SpecR intersected with the image of An. In this way, An inherits the
Zariski topology.

In fact, if k = k and X ⊆ An is an algebraic set, we’ll see that there’s a one-to-one corre-
spondence between points of X and closed points (i.e. maximal ideals) in Spec(R/I(x)).
However, if k is not algebraically closed there can be additional maximal ideals in SpecR.
For instance R[x]/(x2 + 1) ∼= C so (x2 + 1) is a maximal ideal, but it’s not of the previous
form (x− a).
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Corollary 13.3. Let k = k. For each p = (a1, . . . , ar) ∈ An, define mp = (x1 − a1, . . . , xr −
ar) ⊆ k[x1, . . . , xr]. If X is an algebraic set, then every maximal ideal of k[x1, . . . , xr]/I(x) is of
the form mp/I(x) for some p ∈ X. In particular, the points of X are in 1-to-1 correspondence with
the maximal ideals of k[x1, . . . , xr]/I(x).

Proof. This is a corollary to Nullstellensatz, which says that a finitely generated algebra
over a Jacobson ring is Jacobson. Now let S = k[x1, . . . , xr] and suppose n ⊆ S is a
maximal ideal. Applying Nullstellensatz with R = k, we get that 0 = n ∩ R and that
S/n is finite (and thus algebraic over k). So S/n = k.

Now let ai be the image of xi under the map S → S/n = k. Let p = (a1, . . . , ar). Then
mp ⊆ n. Since mp is maximal, mp = n. And we’re done, since maximal ideals in S/I(x)
take the form mp/I(x). Thus p ∈ Z(mp) ⊆ X. �

Now we can prove classical Nullstellensatz.

Theorem 13.4 (Nullstellensatz, classical ). k = k. If I ⊆ k[x1, . . . , xn] is an ideal, then
I(Z(I)) = radI. Thus, the correspondences I 7→ Z(I) and X 7→ I(X) induce a bijection be-
tween algebraic sets of An and radical ideals of k[x1, . . . , xn].

Proof. By the previous corollary, the points of Z(I) correspond to maximal ideals of k[x1, . . . , xn]
which contains I. Thus I(Z(I)) is the intersection of the maximal ideals that contain I. By
our Nullstellensatz, S[k1, . . . , xn] is Jacobson, so every prime containing I appears as the
intersection of maximal ideals. So I(Z(I)) =

⋂
primes containing I = radI.

On the other hand, Z(I(X)) = X follows from the definition of algebraic set, and we
just showed that if I is radical then I(Z(I)) = I. So I and Z are inverse maps between
algebraic sets and radical ideals. �

Something worth pointing out is that in classical algebraic geometry, the only structure
on algebraic sets occurs at the level of set theory and topology (via Zariski). Scheme-
theoretic work imposes additional structure which further distinguishes things (agh idk
if I got this right). Simply put, Z(I) ∼= Z(radI) but if I 6= radI then V(I) 6∼= V(radI).

A lot of the time, it’s really nice to work with finitely-generated graded modules over
graded rings. What we’ll talk about now will give us a way of moving from local rings to
graded rings and similarly of moving from a module over a local ring to a graded module
over a graded ring.

Definition 13.5. A multiplicative filtration of a ring R is a sequence of ideals R = I0 ⊇ I1 ⊇
. . . such that Ii Ij ⊆ Ii+j. Usually we’ll care about the case in which I is an ideal and Ii = Ii,
referred to as the I-adic filtration.

If M is an R-module, then M ⊇ IM ⊇ I2M ⊇ . . . is the I-adic filtration of M.

Definition 13.6. A filtration M = M0 ⊇ M1 ⊇ . . . is an I-filtration if IMn ⊆ Mn+1. It is
I-stable if IMn = Mn+1 for n >> 0.

Definition 13.7. Let I ⊆ R be an ideal. The associated graded ring of R with respect to I is
grI R = R/I ⊕ I/I2 ⊕ . . . . If a ∈ Im/Im+1, b ∈ In/In+1 such that a ∈ Im and b ∈ In, we
define ab ∈ Im+n/Im+n+1 to be the image of ab. You can check that this is well-defined.
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Definition 13.8. If J is an I-filtration of M; M = M0 ⊇ M1 ⊇ . . . , we define grJ M =

M/M1 ⊕M1/M2 ⊕ . . . . This is a grI R-module with the following scaling: if a ∈ Im/Im+1

and b ∈ Mn/Mn+1, then ab ∈ ImMn ⊆ Mn+m. So we define ab ∈ Mn+m/Mn+m+1 to be
the image of ab. Again, one can check that this is well-defined.

Proposition 13.9. Let I ⊆ R be an ideal and M a finitely generated R-module. If J (M = M0 ⊇
M1 ⊇ . . . ) is an I-stable filtration with all the Mi finitely generated, then grJ M is a finitely
generated grI R-module.

Proof. Assume IMi = Mi+1 for i ≥ n. Then (I/I2)(Mi �

14. LECTURE 15 — OCTOBER 28, 2019

Recall that we’ve been talking about filtrations. In particular, for I ⊆ R an ideal, grI R =
R/I ⊕ I/I2 ⊕ . . . with a well-define multiplication. And if M is an R-module with J a
filtration M = M0 ⊃ M1 ⊃ . . . , then J is an I-filtration if IM ⊆ Mi+1. Finally, grJM =
M0/M1 ⊕M1/M2 ⊕ . . . is a graded grI R-module.

Definition 14.1. Let f ∈ M. If ∃m such that f ∈ Mm but f /∈ Mm+1, we define the initial
formula of f to be in( f ) = f ∈ Mm/Mm+1 ⊆ grM. If f ∈ ∩Mm, then in( f ) = 0.

The idea is that we’re taking the smallest graded piece of what f is.

Example 14.2. Let J = (xy + y3, x2) ⊆ R = k[x, y] and I = (x, y) ⊆ R. Then we
define in(J) to be the ideal generated by in(j) for j ∈ J. We have in(x2) = x2 ∈ I2/I3

and in(xy + x3) = xy ∈ I2/I3. Note x(xy + y3) − yx2 − xy3 ∈ in(J) and thus
y2(xy + y3)− xy3 = y5 ∈ in(J) despite the fact that y5 is not generated by x2 and xy.

Let I ⊆ R be a maximal ideal for R Noetherian. Then grI(R) = R/I ⊕ I/I2 ⊕ . . .
and I = ( f1, . . . , fn). So for a ∈ I/I2, a = r1 f1 + · · · + rn fn where ri = 0 or ri /∈ I. If
a ∈ Im/Im+1, then a = r1 f1 + · · ·+ rn fn where each r ∈ R \ Im or ri = 0. So by induction,
ri is a polynomial in the fi over k, i.,e. grI(R) is a finitely generated k-algebra.

Definition 14.3. IF R is a local ring with maximal ideal I, the Hilbert function of R is
HR(n) = dimR/I In/In+1. If M is a finitely generated R-module, define HM(n) = (InM)/(In+1M).

Since these are the Hilbert functions of grI R and grI M, we’re guaranteed that for suffi-
ciently large n, they agree with polynomial of degree at most HR(1)− 1.

Now we’ll talk about the Blowup algebra. It’s possible to understand this kind of stuff
purely algebraically, but having an idea of the geometric picture is nice if that’s your kind
of thing.

Definition 14.4. R a ring, I ⊆ R an ideal. Then the blowup algebra of I in R is the R-algebra
BI R = R⊕ I ⊕ I2 ⊕ . . . .

Often times it’s hard to keep track of where even homogeneous elements live (e.g. an
element of I3 also lives in R, I, and I2). To keep track of the grading, we write elements of
BI R as f = a0 + a1t + a2t2 + · · · ∈ R[tI] ∼= BI(R). In words, we’re just adding t’s to keep
track of which summand we’re in. In this way, BI R is a subring of R[t].
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Remark 14.5. BI(R)/IBI R = R/I ⊕ I/I2 ⊕ . . . ∼= grI R.

Example 14.6. Set R = k[x1, x2] and I = (x1, x2). There’s a natural map
k[x1, x2, y1, y2] → k[x1, x2, t] with xi 7→ xi and yi 7→ xit. The image consists of
elements of the form a0 + a1t + a2t2 + . . . with a0 ∈ R and ai ∈ Ii. So the image
is exactly the blowup algebra. The kernel is (x1y2 − x2y1). The corresponding
algebraic subset Z is the blowup of A2 at the origin.

Note that R ↪−→ k[x1, x2, y1, y2]→ k[x1, x2, y1, y2]/(x1y2 − x2y1) ∼= BI R. Thus there is
a map Z → A2. The yi in k[x1, x2, y1, y2] are homogeneous, which means the points
correspond to ideals of the form (x1 − a1, x2 − a2, b1y1 − b2y2), with the bi not both
0. So for (a1, a2) ∈ A2 not the origin, the point in Z lying over it corresponds to
(x1 − a1, x2 − a2, a2y1 − a1y2). Over (0, 0) we have (x1, x2, b1y1 − b2y2) with the bi
not both zero. So the fiber over (0,0) is one-dimensional, as there’s one degree of
freedom. In fact, it’s a projective line P1. In this case, it’s the exceptional set of the
blowup, i.e. the pre-image of the origin corresponding to the ring BI R/IBiR = grI R.

If R = k[x1, . . . , xn]/J and I = (x1, . . . , xn) such that J ⊆ I, define X = V(J) ⊆ An.

Definition 14.7. The tangent cone corresponding to inI(J) ⊆ k[x1, . . . , xn] is its Spec(grI R/inI J)
and grI R/inJ = grI(R/J). We’ll show this equality holds on the next homework.

The tangent cone consists of the limits of the secant lines to V(J) through the origin.
When blowing up A2 at the origin, each line in the tangent cone corresponds to a point in
the fiber over the origin in the preimage of the curve.

Now back to pure algebra.

Lemma 14.8 (Artin-Rees Lemma). Let M be an R-module and J : M = M0 ⊃ M1 ⊃ . . . be
an I-filtration. Then BJM = M⊕M1 ⊕M2 ⊕ . . . is a graded BI R-module.

Proof. Assume each Mi is finitely generated as an R-module. Then J is I-stable if and
only if BJM is a finitely generated BI R-module. To see why, note that if BJM is finitely
generated, its generators must be contained in the first n terms for some n. Now replace
each generator with its homogeneous components. We get that Mn ⊕Mn+1 ⊕ . . . is gen-
erated by Mn so Mn+i = I I MN for i ≥ 0 and J is stable. On the other hand, if J is stable
then BJM is generated by the union of the generators for M0, . . . , Mn. �

Lemma 14.9 (Artin-Rees Lemma). Let R be Noetherian, I ⊆ R an ideal and M′ ⊆ M both
finitely-generated R-modules. If J : M = M0 ⊇ M1 ⊇ . . . is I-stable, then so is J ′ : M′ ⊃
M′ ∩M1 ⊃ M′ ∩M2 ⊃ . . . .

Proof. Since I is finitely generated, BI R is a finitely generated R-algebra. Then, by Hilbert
basis, it’s Noetherian. BJ M is a finitely generated BI R-module, by our last result, so it’s
Noetherian and BJ ′M′ ⊆ BJM is finitely-generated and thus J ′ is I-stable. �

15. LECTURE 16 — OCTOBER 30, 2019

Today we’ll prove the Krull intersection theorem.
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Theorem 15.1 (Krull Intersection). Let R be Noetherian and I ⊆ R an ideal. If M is a finitely
generated R-module, then ∃ r ∈ I such that (1− r)(∩∞

j=1 I J M) = 0. If furthermore R is a domain
or a local ring and I is a proper ideal, then ∩I j = 0.

Proof. Set M′ = ∩∞
j=1 I jM ⊆ M. M′ is finitely generated so we apply Artin-Rees and

set Mi = Ii M. Then M′ ∩ M ⊃ M′ ∩ IM ⊃ . . . is I-stable, so there’s some P such that
M′ ∩Mp+1 = I(M′ ∩Mp). This implies M′ = IM′. It’d be nice to apply Nakayama, but
we don’t know that I is in the Jacobson radical of R. By a corollary of C-H, however, we
get that there exists r ∈ I such that (1− r)M′ = 0.

For the second statement, take M = R. Then M′ = ∩I j. If R is a domain, then I being
proper means 1− r 6= 0. Thus 1− r is a nonzero divisor, implying M′ = 0. Likewise, if R
is local then 1− r is a unit so M′ = 0. �

Remark 15.2. The condition that R be a domain is necessary. To see why, take R =
k[x]/(x2 − x) and I = (x). Then I2 = (x2) = (x) and thus x ∈ ∩I j.

Corollary 15.3. Let R be a Noetherian local ring and I ⊆ R proper. If grI R is a domain, then so
is R.

Proof. Say f , g ∈ R and f g = 0. Then in( f )in(g) = 0, by this week’s homework. So
in( f ) = 0 or in(g) = 0. By Krull, ∩Ii = 0 and thus f or g equal 0. �

Recall that if M is an R-module and N → N′ → N′′ → 0 is exact, then N ⊗ M →
N′ ⊗M→ N′′ ⊗M→ 0 is exact (i.e. tensoring is right-exact).

Definition 15.4. An R-module M is flat if ∀N ⊆ N′, the induced map M⊗R N → M⊗R N′
is injective.

We’ve shown previously that R[U−1] is a flat R-module. We also know that free mod-
ules are flat. Now we’ll talk about Tor, but in order to do that we first need to discuss free
resolutions.

Definition 15.5. Let M be an R-module. A free resolution of M is a sequence

· · · → F1 → F0 → M→ 0

such that each Fi is free and the sequence is exact.

It turns out that we can always construct a free resolution on M by being greedy. In
particular, fix M a module and {mi}i∈J a generating set for M. Then set F0 = ⊕i∈J R and
let ei be the ith basis vector in F0. We then have a map F0 → M sending ei to mi. It surjects,
giving us the first piece of our resolution.

We need the image of our next map to equal the kernel of this one, so we repeat the
process. Take M0 = ker(F0 → M) and repeat, arriving at F1 → F0 → M→ 0 exact. In this
way we arrive at a free resolution of M.
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Example 15.6. Let M = k[x, y]/(x, y) ∼= k, thought of as a module over R = k[x, y].
This is generated by 1, giving us a surjection

R→ M→ 0

which sends 1 ∈ R to 1 ∈ M. This has kernel (x, y). Then we can append to this
diagram with a map R2 → R by (a, b) 7→ ax + by. This has kernel (−y, x). We
complete the resolution with an injection R→ R2 defined by f 7→ (− f y, f x).

It’s important to keep in mind that free resolutions are not unique.

Definition 15.7. Let M and N be R-modules and · · · → F1 → F0 → M → 0 a free
resolution. Then TorR

i (M, N) is the homology at Fi ⊗ N of the complex · · · → F1 ⊗ N →
F0 ⊗ N → 0.

Facts about Tor:
1.) It’s well-defined (with respect to choice of free resolution)
2.) It’s symmetric. We could instead find a free resolution of N and tensor by M, and

we’d get the same modules.
3.) TorR

0 (M, N) = coker(F1 ⊗ N → F0 ⊗ N). Since tensoring is right-exact and the
original F1 → F0 → M→ 0 were exact, that comes out to M⊗ N.

It turns out that Tor is the left derived functor tensor, which is how we’ll be thinking
about Tor.

16. LECTURE 17 — NOVEMBER 4, 2019

Recall that for M, N two R-modules, · · · → F1 → F0 → M → 0 is a free resolution of M
and TorR

i (M, N) = Hi(F• ⊗ N). Last time we mentioned the following facts:
1.) Tori(M, N) does not depend on choice of resolution.
2.) Tori)(M, N) = Tori(N, M)
3.) Tor0(M, N) = coker(F1⊗N → F0⊗N) = M⊗N, since tensoring is right-exact and

the original sequence was exact.
4.) If M is free, it has free resolution 0→ M→ M→ 0 so Tori(M, N) = 0 for i > 0.
5.) Like tensoring, Tor is R-bilinear. So multiplication on M or N by r ∈ R induces

multiplication on TorR
i (M, N) by r.

6.) If R is Noetherian and M, N are finitely-generated, then TorR
i (M, N) is finitely-

generated.
7.) If S is a flat R-algebra, then S⊗ Tori(M, N) = Tori(S⊗ N, S⊗ N). This may be on

the next homework.
8.) Tor solves the problem of tensoring not being exact (and only being right exact).

Tor is the left derived functor of the tensor product. That is, if 0 → M′ → M →
M′′ → 0 is exact, then

· · · → Tor2(M′′, N)→
Tor1(M′, N)→ Tor1(M, n)→ Tor1(M′′, N)→

M′ ⊗ N → M⊗ N → M′′ ⊗ N → 0
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is exact.

Example 16.1. Set R = k[x] and M = k[x]/(x). We have a free resolution

0→ R ·x−→ R→ R/(x)→ 0

If N is any R-module, then we have that Tori(M, N) = Hi(0 → N ·x−→ N → 0) so
Tor0(M, N) = N/xN ∼= R/(x)⊗ N. Tor1(M, N) = {n ∈ N|xn = 0}, and the higher
Tor are all zero.

In fact this holds more generally for any R and x ∈ R a nonzero divisor (we need that x
not be a zero divisor in order for the free resolution to be exact).

There’s an immediate connection: if TorR
1 (M, N) = 0 for all N, then M is flat so tensor-

ing by M is exact and it turns out that TorR
i (M, N) = 0 for all i > 0 and all N. This will

be on the next homework, but it’s fairly straightforward: it comes down mostly to the fact
that it’s left derived to tensoring and that it comes from free resolutions.

Proposition 16.2. Let R be a ring and M an R-module.
a) If I ⊆ R is an ideal, then I ⊗R M→ M is an injection if and only if Tor1(R/I, M) = 0.
b) M is flat if and only if (a) is satisfied for all ideals I ⊆ R.

Proof. For (a), consider the SES 0→ I → R→ R/I → 0. There’s a LES

· · · → Tor1(R, M)→ Tor1(R/I, M)→ I ⊗ N → R⊗M→ . . .

Note that R⊗M ∼= M and Tor1(R, M) = 0 since R is free. Then, by exactness, Tor1(R/I, M)
is 0 if and only if the map I ⊗M→ R⊗M is an injection.

For (b), if M is flat then condition (a) is satisfied by definition. Assume now that it’s
satisfied for all ideals I ⊆ R and let N′ ⊆ N be R-modules. Consider N′ ⊗M → N ⊗M.
The condition of being an injection only involves finitely many elements of N, so replace
N with the submodule generated by those elements. Then we may assume N is finitely
generated, so N/N′ is finitely generated. Let N′ = N0 ⊆ N1 ⊆ · · · ⊆ Np = N where
Ni+1/Ni is simple. If Ni⊗M→ Ni+1⊗M is injective for all i, then we’re done. So assume
N/N′ is generated by one element. Then R � N/N′ so N/N/ ∼= R/I for some ideal
I ⊆ R. Then

· · · → Tor1(N/N′, M)→ N′ ⊗M→ N ⊗M→ . . .
is exact. The Tor is 0 by assumption, so N′⊗M→ N⊗M is an injection and M is flat. �

Definition 16.3. An R-module M is torsion-free if for r ∈ R a nonzero divisor in R and
m ∈ M nonzero, then rm 6= 0.

Corollary 16.4. a.) If M is a flat R-module, it’s torsion-free.
b.) If R is a PID, then M is flat if and only if M is torsion-free.

Proof. For (a), let a ∈ R be a nonzero divisor in R. Define R → R by r 7→ ar. This is an
injection, so since M is flat, R⊗M ·a−→ R⊗M is an injection. This is just M ·a−→ M, so a is a
nonzero divisor on M and M is torsion-free.

For (b), we see that the forward direction follows from (a). For the backward direction,
assume M is torsion-free and I ⊆ R is an ideal. Then I = (a) for a a nonzero divisor in R.
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We’d like to show that TorR
1 (R/(a), M) = 0. If a = 0, we’re done since R is flat. If a 6= 0,

then by a previous example Tor1(R/(a), M) = {m ∈ M|am = 0} = 0. �

Example 16.5. For k = k, set R = k[t] and S = R[x]/(t(x − 1)). S has torsion, e.g.
t(x− 1) = 0, so S is not flat over R.

It turns out that flatness is a local property. Geometrically, this means it can be checked
in neighborhoods around points, and algebraically this means that we can check the prop-
erty at localizations at prime ideals.

Proposition 16.6. M is flat over R if and only if MP is flat over RP for all primes (or maximal
ideals) P

Proof. If M is flat, then a SES of RP modules 0 → N′ → N → N′′ → 0 maps to the SES
0 → M⊗R N′ → M⊗R N → M⊗R N′′ → 0. But M⊗R N ∼= MP ⊗RP N as RP-modules,
via m⊗ n/u 7→ m/1⊗ n/u. So MP is flat.

Now assume M is not flat. Then there exists some SES of R-modules 0 → N′ → N →
N′′ → 0 that’s not exact when tensoring by M. Then 0 → K → M⊗R N′ → M⊗R N →
M⊗R N′′ → 0 is exact, for K the kernel of the following map. Since K 6= 0, there exists a
prime P such that KP 6= 0. Thus localizing at P is exact and MP isn’t flat. �

Example 16.7. Set M = k[x, t]/(t(x− 1)) and R = k[t]. The ’problem point’ was (t).
In fact, M(t) = k[x, t](t)/(t(x − 1))(t), which has torsion, so M is not flat at (t). At
any other point, M(t−a) = k[x, t](t−a)/(x− 1), since t is a unit in M(t−a). This is just
k[t](t−a), which is a free R(t−a)-module and thus flat.

17. LECTURE 18 — NOVEMBER 6, 2019

Now we’ll start talking about completions - Eisenbud’s chapter on completions is aw-
fully long, and it’s probably not as important as what will come afterwards (like dimen-
sion theory), so we’ll devote two lectures to it. Today will be about construction and basic
properties, and tomorrow we’ll get into more sophisticated results, some of which we
won’t prove.

Here’s the basic idea: if R is a ring and M ⊆ R an ideal, the localization RM tells us
about Zariski open neighborhoods of M. The completion R̂M tells us about ’analytic’
open neighborhoods around M. Roughly speaking, the localization was not sufficiently
expressive for tasks in differential topology and related areas.
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Example 17.1. Set R = k[x, y]/(y2 − x − 1) for k = C. k[x] ↪−→ R induces a map
which projects the graph of y2 − x − 1 on the x axis via π. In standard topology,
π has nonzero derivative at (0,−1), so the inverse function theorem assures us
of a neighborhood U of 0 such that there exists an analytic inverse U → V, via
x 7→ (x,−

√
x + 1). The problem is that our inverse map isn’t algebraic - it’s not

a polynomial - so we don’t have an algebraic inverse to π. However,
√

x + 1 can
be approximated using a power series expansion: −

√
x + 1 = −1− x

2 + x2

3 − . . . ,
which converges for |x| < 1.

Before we formally define completions, we’ll first need to define inverse limits, which
arise pretty frequently in math.

Definition 17.2. Let {Ai}i∈J be a collection of groups with J partially ordered such that if
i ≤ j then ∃φij : Aj → Ai satisfying

1) φii = id
2) φik = φij ◦ φjk∀i ≤ j ≤ k

These form an inverse system. The inverse limit of the inverse system is

lim
←

Ai = {a ∈∏ Ai|ai = φij(aj)∀i ≤ j}

Now we’re ready to define completions as inverse limits.

Definition 17.3. Let R be a ring and M ⊆ R an ideal. Then {R/Mi} is an inverse system
with φij : R/Mj → R/Mi the natural quotient. This setup would make sense for any
filtration of ideals. We define the completion with respect to M to be

R̂M = lim
←

R/Mi = {g = (g1, g2, . . . ) ∈∏ R/Mi|gj = gi ∈ R/Mi for j > i}

R̂M is a ring equipped with coordinate-wise addition and multiplication. For each i,
define M̂i = {g = (g1, . . . , ) ∈ ∏ R/Mi|gj = 0 for j ≤ i}. Each gj is equivalent mod Mi,
so R̂/M̂i ∼= R/Mi. And if M ⊆ R is maximal, then R̂/M̂ = R/M so m̂ ⊆ R̂ is maximal. If
g = (g1, g2, . . . ) ∈ R̂M but not in m̂j, then g1 = 0.

So each gi /∈ M/Mi ⊆ R/Mi and each gi is a unit. Since gj ≡ gi mod Mi, then g−1
j ≡ g−1

i

mod Mi. So h = (g−1
1 , g−1

2 , . . . ) ∈ R̂ and it’s the inverse of g, meaning g is a unit. We
conclude that R̂ is local if M is maximal in R.
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Example 17.4. Set R = S[x1, . . . , xn] and M = (x1, . . . , xn). We want to show that
R̂ ∼= S[[x1, . . . , xn]]. Note S[[x1, . . . , xn]]/Mi ∼= R/Mi, so we have a natural map

S[[x1, . . . , xn]]→ R̂

f 7→ ( f + M, f + M2, . . . )

In the other direction, if ( f1 + M, f2 + M2, . . . , ) ∈ R̂, then for i > j, fi = f j +

terms of degree > j. So we have a map ( f1 + M, f2 + M2, . . . ) 7→ f1 + ( f2 − f1) +
( f3 − f2) + · · · ∈ S[[x1, . . . , xn]]. This is well-defined.

Example 17.5. Let p ∈ Z be prime. The ring Ẑ(p), written Zp, is called the ring of
p-adic integers. Let (a1 + (p), a2 + (p2), . . . ) ∈ Zp where 0 ≤ ai < pi. For each
i, ai+1 ≡ ai (mod p)i. So ai+1 − ai = bi pi for bi < p. We write these as a power
series, called a p-adic expansion: a1 + b1p + b2p2 + . . . . These partial sums recover
the ai. Note however, that when we add we need to carry over multiples of the pi,
in order to ensure that their coefficients be less than p. For instance, in Z2 we have
(1, 1, 1, 9, 9, . . . ) + (1, 1, 1, 1, 1, 1, 1) = (0, 2, 2, 10, 10, . . . ). The corresponding 2-adic
expansions are

(1 + 0 · 2 + 0 · 22 + 1 · 23) + (1 + 0) = (0 + 1 · 2 + 0 · 22 + 1 · 23)

Note that Z ↪−→ Zp. And since any p-adic expansion a0 + a1p + . . . with 0 ≤ a < p
corresponds to a unique element in Zp, Zp is uncountable.

18. LECTURE 19 — NOVEMBER 11, 2019

Definition 18.1. For R a ring and M ⊆ R an ideal, if the natural map R → R̂M is an
isomorphism, R is complete with respect to M. When M is maximal, we say it’s a complete
local ring.

Note that the natural map will fail to inject when ∩Mi 6= 0, as ∩Mi 7→ 0 ∈ R̂M. From
now on, we’ll write R̂ to denote R̂M. We have natural maps

R̂→ R/Mn

( f1, . . . , ) 7→ fn

Recall that M̂n = {( f1, . . . , ) ∈ R̂| fi = 0 i ≤ n}, and note that it’s the kernel to the
above map. Note also that the elements of MnR̂ are generated by elements of the form
(ar1, ar2, . . . ) for a ∈ Mn and (r1, . . . , ) ∈ R̂. In particular, ari ∈ Mn, so it’s 0 for i ≤ n.
Thus MnR̂ ⊆ M̂n. If R is Noetherian, then this is an equality.

Example 18.2. For R = C[x1, x2, . . . ] and M = (x1, x2, . . . ), you have that
(0, x1, x1 + x2

2, x1 + x2
2 + x3

3, . . . ) ∈ M̂1 −MR̂.
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Proposition 18.3. R̂ is complete with respct to the filtration with the M̂i.

Proof. We saw last time that R̂/M̂n ≡ R/Mn. So

R̂ = lim
←

R/Mn

= lim
←

R̂/M̂n

= completion of R̂ with respect to M̂1 ⊃ M̂2 ⊃ . . .

�

Theorem 18.4. Let R be Noetherian and m ⊆ R an ideal, R̂ the completion with respect to m.
Then

1.) R̂ is complete with resepct to mR̂.
2.) R̂ is Noetherian.
3.) R̂ is a flat R-module.

Proof. See Eisenbud. �

You can think of completions as adding limits of certain sequences in the original ring,
as with completions of metric spaces.

Example 18.5. In R[x], the sequence a0, a0 + a1x1, a0 + a1x1 + a2x2 ”converges to”
∑ aixi ∈ R[[x]].

In Z2, the sequence 1, 1 + 2, 1 + 2 + 22 converges to −1 = 1 + 2 + 22 + · · · ∈ Z2.

Developing this idea requires a formal definition.

Definition 18.6. A sequence a1, a2, · · · ∈ R̂ converges to a ∈ R̂ if ∀n ∈ N, ∃i(n) ∈ N such
that a− aj ∈ m̂n ∀j ≥ i(n).

In words, convergence means that eventually the first n coordinates become the same
and stay the same. This also gives rise to an intuitive definition of the Cauchy property.

Definition 18.7. A sequence a1, a2, · · · ∈ R̂ is Cauchy if ∀n ∈ N ∃i(n) ∈ N such that for
i, j ≥ i(n), ai − aj ∈ M̂n.

In this setting, it’s pretty easy to see that a sequence is Cauchy if and only if it converges
to an element of R̂, as one would hope. Next we’ll talk about Hensel’s lemma, which is
motivated by the fact that in the p-adics, congruences are approximations: if a ≡ b mod
pn, then they agree in their first n entries.

Example 18.8. 5 ≡ 12 mod 2 and likewise mod 22, but not mod 23. And it’s not the
square of anything mod 8, so 5 isn’t a square in Z2. Now, consider 7 ∈ Z3. We have
that 7 ≡ 1 mod 3 and 7 ≡ (1 + 3)2 mod 9, and even 7 ≡ (1 + 3 + 32)2 mod 27. In
fact, it turns out that we can continue indefinitely, so 7 is a square in Z3.
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Hensel’s lemma will give us conditions for determining when the root of a polynomial
mod p can be lifted to a root in Zp. For instance, we’ve already seen that x2 − 5 has no
root in Z2, but that x2 − 7 does have a root in Z3.

Lemma 18.9 (Hensel’s lemma, version 1). If f (x) ∈ Zp[x] and a ∈ Zp satisfies f (a) ≡ 0
(mod p) and f ′(a) 6≡ 0 (mod p), then there’s a unique b ∈ Zp such that f (b) = 0 and a ≡ b
(mod p).

Example 18.10. In the case f (x) = x2 − 5 in Z2, f ′(x) = 2x ≡ 0 (mod p), so we
can’t find a square root this way. In Z3, f (x) = x2 − 7 has f (1) = 0 (mod 3) and
f ′(1) = 2 6= 0 (mod 3). So f has a root in Z3.

In general, which elements c ∈ Zp are perfect squares? If we can write c = pnb with
n ≥ 0 and p - b, then c is a square if and only if n is even and b is a square. Consider
f (x) = x2− b ∈ Zp[x] and f ′(x) = 2x = 0. If p 6= 2, then if b is a square mod p (say b ≡ a2

mod p), then a2 = b

Lemma 18.11 (Hensel’s lemma). Let R be a ring that’s complete with respect to m. Let f (x) ∈
R[x] be a polynomial with f (a) ∈ f ′(a)2m. Then ∃ a root b of f ”near” a in the sense that
f (b) = 0 and b− a ∈ f ′(a)m. If f ′(a) is a nonzero divisor in R, then b is unique.

Example 18.12. Let’s go back to Z2 and c = 2nb for b odd. If b is a square, then
b = (1 + 2k)2 = 1 + 4k + 4k2 = 1 + 4(k + k2). Since k + k2 is even regardless of the
parity of k, this tells us that b ≡ 1 mod 8. If f (x) = x2 − b, then f ′(x) = 2x and
thus f ′(a)2m ≡ 0 mod 8. Then take a = 1. That gives a2 − b ≡ 0 mod 8, so Hensel’s
lemma gives us that b is a 2-adic square.

We’re done with completions - next time we’ll talk about dimension theory!

19. LECTURE 20 — NOVEMBER 13, 2019

Definition 19.1. The Krull dimension of a ring R, or just dimension, is dim R, the supremum
of lengths of chains of prime ideals in R, e.g. the chain Pr ) Pr−1 ) · · · ) P0 has length r.

To see that this is a natural definition, note that it agrees with the dimension of finite-
dimensional vector spaces when prime ideals are replaced with subspaces. If R is thought
of as representing a scheme, its prime ideals are its subschemes and we arrive at an
analagous definition. Unfortunately, it’s pretty hard to perform computations with this
definition.

Example 19.2. In C[x1, . . . , xn], there’s a chain (x1, . . . , xn) ) (x1, xn−1) ) · · · ) (0).
So the dimension is at least n, but it’s not trivial to show that longer chains don’t
exist.
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Definition 19.3. If I ( R is an ideal, then the dimension of I is dim I = dim R/I. If I
is prime, then we define the codimension of I to be the supremum of lengths of chains
of primes descending from I. Then codim I = dim RI . If I is an arbitrary ideal, define
codim I = min{codim P|P ⊇ I, P prime}.

Definition 19.4. Let M be an R-module. Then dim M = dim annM = dim(R/annM).

Here’s a question: if I ⊆ R is an ideal, why can’t we define codim I = dim R− dim I?
Even if I is prime, it’s not obvious that you can choose a maximal chain of primes which
contains I. The answer is that this is true in ”nice” cases (e.g. if R is a domain which is
finitely generated as a k-algebra), but it’s not true more generally.

Example 19.5. Consider the following in A3: the plane defined by x = 0 and the x-
axis defined by y = z = 0. In k[x, y, z], this is cut out by the ideal (x)(y, z) = (xy, xz).
Let R = k[x, y, z]/(xy, xz). There’s the chain (x) ⊂ (x, y) ⊂ (x, y, z), so dim R ≥ 2
(in fact, it equals 2). Setting I = (x− 1, y, z) ⊆ R, we have that dim I = dim R/I = 0
since R/I is a field. But codim I = dim RI = dim k[x, y, z]I/(y, z) = dim k[x](x−1) =
1.

The intuition of the mismatch is that dimension is global while codimension is local (it
literally localizes). From here on out, we’ll be using some of our earlier results regarding
Artinian rings/modules. So we’ll remind ourselves of them:

First recall that R is Artinian if every strictly decreasing chain of ideals is finite. We’ve
already seen this next theorem.

Theorem 19.6. Let R be a ring. Then R is Artinian if and only if R is Noetherian and all its prime
ideals are maximal. Moreoever, if R is Artinian then it has only finitely many maximal ideals.

Corollary 19.7. If R is Noetherian, then R is Artinian if and only if SpecR is finite.

Now we can translate these results in terms of dimension.

Corollary 19.8. If R is Noetherian, then dim R = 0 ⇐⇒ R is Artinian ⇐⇒ SpecR is finite.

When we talked about the ’going up theorem’, we saw that we can lift an increasing
chain of prime ideals in R to a ring S integral over R. We also showed that if two primes
in S, one contained in the other, have the same intersection in R then they must be equal.

Proposition 19.9. Let φ : R→ S be a map of rings that makes S integral over R. Then any prime
ideal of R that contains ker φ is the pre-image of some ideal of S. Moreoever, if I ⊆ S is some ideal,
then dim I = dim φ−1(I).

Proof. If I ⊆ S then ker φ ⊆ φ−1(I), so R/φ−1(I) ∼= φ(R)/φ(R) ∩ I. So we can replace R
with its image in S and assume R ⊆ S. Then the first statement follows from the going
up theorem. For the second statement, consider a chain of primes containing φ−1(I) ⊆ R:
P0 ( P1 ( . . . . By going up, there exists a prime chain Q0 ( Q1 ( . . . in S containing I.
So dim I ≥ dim φ1(I). On the other hand, going down means that chains of primes in S
descend to chains of primes of equal length in R, so in fact the dimensions coincide. �
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Corollary 19.10. Let φ : R→ S be a map of rings such that S is Noetherian and integral over R.
Let ψ : SpecS→ SpecR be the induced map. Then

1.) The fibers of φ over closed points (i.e. maximal ideals) are finite.
2.) If X = V(I) ⊆ SpecS is closed, then ψ(x) ⊆ SpecR is closed with the same dimension as

X, i.e. ψ(X) = V(J) and dimS I = dimR J.

Proof. Kind of involved but not super exciting. �

20. LECTURE 21 — NOVEMBER 20, 2019

Today we’ll finish the principal ideal theorem (PIT) from last time. Again we’ll be tak-
ing all rings to be Noetherian. Recall the statement of PIT: if P is a minimal prime over
(x1, . . . , xc) then codim P ≤ c. The partial converse we’ll prove today is as follows:

Corollary 20.1. If P is a prime of codimension c, then P is minimal over an ideal generated by c
elements.

Proof. By induction, for 0 ≤ r < c, we can choose x1, . . . , xr ∈ P to generate an ideal
of codimension r. The base case is r = 0. Any prime of codimension 0 is minimal over
0. Let Q1, . . . , Qn be the minimal primes contained in P. There are only finitely many
minimal primes, as these are associated primes of 0 (of which there are only finitely many).
By prime avoidance, P 6= ∪Qi, so ∃x1 ∈ P with x1 not in any Qi. Then P/(x1) has
codimension ≤ c− 1.

So by induction, P/(x1) is minimal over an ideal generated by at most c− 1 elements.
Let (x2, . . . , xd) be lifts of these elements in P. We have that P is minimal over (x1, . . . , xd).
So d ≤ c, but c = codim P ≤ d by the PIT. Thus d = c. �

Recall that for R Noetherian, R is a UFD if and only if every prime minimal over a
principal ideal is principal.

Corollary 20.2. Let R be an integral domain. If every codimension 1 prime of R is principal, then
R is a UFD.

Proof. Primes minimal over principal ideals have codimension 1 or (because we’re in a
domain) are zero. �

”Questions? You should have questions, because I have questions. I’m con-
fused.” - Dr. Ullery

The next thing we’ll talk about is systems of parameters, continuing to assume that our
rings are Noetherian.

Corollary 20.3. If R is a local ring with maximal ideal m, then dim R is the smallest d such that
∃ elements x1, . . . , xd ∈ m with mn ⊆ (x1, . . . , xd) for n >> 0.

Proof. If mn ⊆ (x1, . . . , xd) ⊆ m, then m is minimal over (x1, . . . , xd). So dim R ≤ d, by
PIT. In the other direction, we can find x1, . . . , x` ∈ m with ` = dim R such that m is
minimal over (x1, . . . , x`). Then R/(x1, . . . , x`) has a single prime. So mm is nilpotent and
dim R = e ≥ d, since d is the minimal such number. �

Definition 20.4. For R a local ring, a sequence of elements x1, . . . , xd as in the corollary is
called a system of parameters for R.
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Proposition 20.5. If (R,m) is a local ring of dimension d, TFAE:
1.) x1, . . . , xd ∈ m is a system of parameters
2.) rad(x1, . . . , xd) = m
3.) m is minimal over (x1, . . . , xd)

Recall that local rings have finite length if and only if they’re Artinian. This is the case if
and only if the ring’s maximal ideal is the only prime ideal, and that’s the case if and only
if mn = 0 for n >> 0. So for R a local ring, mn ⊆ q for n >> 0 if and only if R/q has finite
length. Such an ideal q is said to have finite colength.

If M is a finitely generated module over a local ring R, then q ⊆ m has finite colength on
M if M/qM has finite length. Just like with rings, this is the case if and only if a power of
m annihilates M/qM.

Proposition 20.6. If R is anything, M a finitely generated R-module, and q ⊆ R an ideal, then
rad(ann(M/qM)) = rad(q + annM).

Proof. It suffices to show that a prime P contains ann(M/qM) ⇐⇒ P contains q+ annM.
Recall P ⊇ ann(M/qM) ⇐⇒ (M/qM)P 6= 0. By Nakayama, MP/qPMP 6= 0 ⇐⇒
MP 6= 0 and qP ⊆ PP. And those conditions are satisfied exactly when P ⊇ q and P ⊇
annM. �

Proposition 20.7. Let (R,m) be local ring and M a finitely generated R-module. Then dim M is
the least number d such that there exists an ideal of finite colength on M generated by d elements.

That’s all for today - next time we’ll keep talking about systems of parameters.

21. LECTURE 22 — NOVEMBER 18, 2019

Today we’ll talk about the principal ideal theorem, and we’ll be supposing that all rings
are Noetherian. Last time we talked about a ring’s dimension, which is the maximum
length of a chain of prime ideals in the ring. We saw that calculating dimension is pretty
hard, and one of our goals is now to develop tools to calculate dimension. One class of
tools makes use of the ring’s generators.

If (a) is prime, then if b = ra nonzero and prime then r is a unit so (b) = (a). Thus
codim(a) ≤ 1. In fact, a stronger statement holds:

Proposition 21.1. Any prime P properly contained in a principal ideal (x) 6= R has codimension
0.

Proof. Suppose Q ( P ( (x) with Q prime. Then R/Q is an integral domain. Without loss
of generality, we can replace R with R/Q and assume that Q = 0 and that R is a domain.
If y ∈ P then y = ax for some a. Since x /∈ P, it must be that a ∈ P. So P = xP. Then
there must be a b ∈ (x) such that (1− b)P = 0. Since R is a domain, it must be that b = 1,
producing contradiction. �

Theorem 21.2 (Krull’s principal ideal theorem). If x ∈ R and P is minimal among primes
containing x, then codim P ≤ 1.

Before we can prove this, we recall a corollary about primes minimal over a given ideal
- for R Noetherian and I ⊆ R an ideal and P ⊆ I a prime, TFAE:

39



a) P is minimal among primes containing I.
b) RP/IP is Artinian.
c) Pn

P ⊆ IP in RP for n >> 0.
This is 2.19 in Eisenbud. We’ll also need a new definition.

Definition 21.3. Q ⊆ R prime. The nth symbolic power of Q is

Q(n) = QnRQ ∩ R
= {r ∈ R|sr ∈ Qn for some s ∈ R \Q}

It’s not hard to see that Qn ⊆ Q(n) ⊆ Q. It also turns out that (Q(n))Q = (QQ)
n.

Example 21.4. Let R = k[x, y, z]/(xy − z2) and set P = (x, z). Then y /∈ P but
xy = z2 ∈ P2, so x ∈ P(2) \ P2.

Now back to our original goal.

Proof of Krull’s PIT. Let x ∈ R and P be a minimal prime over (x). We’ll show that if
Q ( P is prime, then dim RQ = 0, i.e. codim Q = 0. This shows that codim P ≤ 1,
since codim P = codim PP. So we can assume that R is local and P is maximal. Since P is
minimal over (x), the corollary says that R/(x) is Artinian.

Thus the chain (x) + Q ⊃ (x) + Q(2) ⊃ (x) + Q(3) ⊃ . . . stabilizes. Say (x) + Q(n) =

(x) + Q(n+1). Then Q(n) ⊆ (x) + Q(n+1). So if f ∈ Q(n), we can write f = ax + g for
g ∈ Q(n+1). Thus ax = f − g ∈ Q(n) ⊆ Q, and axb ∈ Qn for some b ∈ R \ Q. x /∈ Q
by minimality of P, so xb ∈ R \ Q and thus a ∈ Q(n). So Q(n) ⊆ (x)Q(n) + Q(n+1). The
reverse inclusion is clear, so Q(n) = (x)Q(n) + Q(n+1). So, in R/Q(n+1), Q(n) = (x)Q(n).

Then, by Nakayama, Q(n) = 0 and thus Q(n) = Q(n+1). Now recall that (Q(n))Q =

(QQ)
n, thus in RQ we have that (QQ)

n = (QQ)
n+1. Again using Nakayama, we have that

(QQ)
n = 0. So RQ is Artinian, by the corollary, and RQ has dimension 0. �

Theorem 21.5. If x1, . . . , xc ∈ R and P is a minimal prime over (x1, . . . , xc), then codim P ≤ c.

Proof. Again we make use of the fact that codim P = dim RP to assume that R is local
with maximal ideal P. By the corollary, Pn ⊆ (x1, . . . , xc) for n >> 0. Let P1 be a prime
such that P ) P1 with no primes in between. We’ll show that P1 is minimal over an ideal
generated by c− 1 elements. By induction, codim P1 ≤ c− 1 and we’re done.

By minimality of P, P1 can’t contain all xi. Assume x1 /∈ P1. Then P is a minimal
prime over (x1, P1), meaning P is nilpotent in R/(P1, x1). I spaced out for the rest of the
proof. �

Corollary 21.6. Let P ⊆ R be a prime ideal (R Noetherian). Then any strictly decreasing chain of
primes has length at most the number of generators of P.

In particular, since (x1, . . . , xc) ⊆ k[x1, . . . , xn] has descending chain (x1, . . . , xc) ⊃ (x2, . . . , xc) ⊃
· · · ⊃ 0, we know that the codimension of (x1, . . . , xc) is at least c. By the PIT it’s at most
c, so in fact codim(x1, . . . , xc) = c.
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22. LECTURE 23 — NOVEMBER 25, 2019

Last time we were talking about systems of parameters, and we wanted to think about
a local ring where the generators of the maximal ideal don’t form a system of parameters.
Here’s a question for next time: what’s an example of a local ring where the generators of
the maximal ideal do not form a system of parameters.

Recall that if R is a local ring, then q ⊆ R has finite colength ⇐⇒ R/q has finite length
⇐⇒ mn ⊆ q for n >> 0. We’ve also seen that if M is a finitely generated module over a
local ring (R,m), then q ⊆ m has finite colength on M if M/qM has finite length ⇐⇒ mn

annihilates M/qM for n >> 0.

Proposition 22.1. Let (R,m) be a local ring, M a finitely generated R-module, and q ⊆ R an
ideal. Then

a.) q has finite colength on M ⇐⇒ (q + annM) ⊇ mn for n >> 0 ⇐⇒ q has finite
colength on R/annM.

b.) If 0 → M′ → M → M′′ → 0 is a short exact sequence of R-modules, then q has finite
colength on M ⇐⇒ q has finite colength on M′ and M′′.

c.) dim M is the least number d such that there exists an ideal of finite colength on M gener-
ated by d elements.

Proof. For a.), note that q has finite colength on M ⇐⇒ Rad(q+ annM) = rad(ann(M/qM)) =
m. And this holds ⇐⇒ mn ⊆ q+ annM for n >> 0. Note now that (R/annM)/q(R/annM) ∼=
R/q + annM, which has annihilator q + annM. So q has finite colength R/annM ⇐⇒
rad(q + annM) = m ⇐⇒ q has finite colength on M.

For b.), note that if q has finite colength on M, then annM ⊆ annM′ ∩ annM′′. So
q + annM ⊆ q + annM′, q + annM′′. Since rad(annM/qM) is maximal, the radicals of
ann(M′/qM/) and ann(M′′/qM′′) are as well. In the other direction, assume that q has
finite colength on M′ and M′′. Tensoring by R/q, we have an exact sequence

M′/qM′ → M/qM→ M′′/qM′′ → 0

which give us what we want.
For c.), note that dim M = dim R/annM, which equals the smlleast number d such that

q = (x1, . . . , xd) has finite colength on R/annM for n >> 0. By a.), q has finite colength
on M if and only if it has finite colength on R/annM. �

The hope now is to get a result like PIT for dimension rather than codimension. We’d
like to say something about how modding out by a single elements alters the dimension
of a module.

Corollary 22.2. If (R,m) is a local ring and M a finitely generated R-module, then for x ∈ m, we
have dim M− 1 ≤ dim M/xM ≤ dim M.

Proof. Only the first inequality demands justification. If d = dim M/xM, then there exists
q = (x1, . . . , xd) of finite colength on M/xM. This means M/(x, q)M = M/(x1, . . . , xd, x)M
has finite length. So (x1, . . . , xd, x) has finite colength on M. So dim M ≤ d + 1, and we’re
done. �

Proposition 22.3. Let (R,m) be a local ring and S an R-algebra with mS 6= S. Then codimmS ≤
codimm.
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Proof. If x1, . . . , xd is a system of parameters in R, then any prime in S minimal over mS is
minimal over I = (x1, . . . , xd). Suppose P is minimal over mS. Then let I ⊆ Q,mS ⊆ P
for Q prime. Then for ψ : R → S inducing the algebra, we have (x1, . . . , xd) ⊆ ψ−1(I) ⊆
ψ−1(Q) ⊆ m. So ψ−1(Q) = m and thus mS ⊆ Q and P = Q. Our inequality follows from
the PIT. �

What can we say when moreover S is local? It turns out that we can say quite a bit more.

Theorem 22.4. Let ψ : (R,m) → (S, n) be a map of local rings such that ψ(m) ⊆ n. Then
dim S ≤ dim R + dim S/mS.

Proof. Let d = dim R and e = dim S/mS. Let x1, . . . , xd ∈ m be a system of parameters for
R and y1, . . . , ye ∈ n ⊆ S with images in the quotient which are a system of parameters
for S/mS. Then for α >> 0, we have nα ⊆ (y1, . . . , ye) +mS. And for β >> 0, we have
mβ ⊆ (x1, . . . , xd). Then

nαβ ⊆ ((y1, . . . , ye) +mS)β

⊆ (y1, . . . , ye) +mβS
⊆ (x1, . . . , xd, y1, . . . , ye)S

So dim S ≤ d + e, as desired. �

What’s going on here geometrically is that for X → Y a map of varieties (or schemes),
the dimension of X is at most the dimension of Y plus the dimension of a fiber.

Something that will be useful going forward is the going down theorem.

Theorem 22.5. Let φ : R → S be a map of rings such that S is a flat R-module. If P ⊃ P′ are
primes of R and Q is a prime of S with φ−1(Q) = P, then there exists a prime Q′ of S contained
in Q such that φ−1(Q′) = P′. In fact, Q′ may be taken to be any prime of S which is contained in
Q and minimal over P′S.

Proof. Since P′S ⊆ Q, we can find a prime Q′ ⊆ Q minimal over P′S. I claim that S⊗ R/P′
is flat over R/P′. If M′ ⊆ M are R/P′-modules, then they’re R-modules. So
S ⊗R M′ ↪−→ S ⊗R M. With some work, we can see that S ⊗ R/P′ = S/P′S is flat over
R/P′. So we can replace R with R/P′ and S with S/P′S and reduce to the case P′ = 0. I
lost track for the rest of this proof. �

23. LECTURE 24 — DECEMBER 2, 2019

Last time we saw that if R→ S is such that S is a flat R-module then if P0 ⊇ P1 ⊇ · · · ⊇
Pn is a chain of prime ideals in R and Q0 lies over P0 then there exist Q0 ⊇ Q1 ⊇ · · · ⊇ Qn
in S such that Qi lies over Pi. This was the going down theorem.

We also saw that if ψ : (R,m) → (S, n) is a local map such that ψ(m) ⊆ n, then dim S ≤
dim R + dim S/mS. Geometrically, this is a statement somewhat like rank nullity: the
dimension of the domain is at most the sum of that of the target and that of the fiber.

Corollary 23.1. If R and S are as above and S is a flat R-module, then dim S = dim R +
dim S/mS.
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Proof. We need only show that dim S ≥ dim R + dim S/mS. This follows from the going
down theorem. Let be Q ⊆ S a prime minimal over mS such that dim Q = dim S/mS.
Then dim S ≥ dim Q+ codimQ = dim S/mS+ codimQ. So it remains to show codimQ ≥
dim R. Since Q ⊇ mS so ψ−1(Q) = m. Let m ⊇ P1 ⊇ · · · ⊇ Pd with d = dim R. By going
down, we have an analogous chain in Q. So codimQ ≥ dim R, and we’re done. �

Corollary 23.2. If R is a ring, then dim R[x] = 1 + dim R. In particular, if k is a field then
dim k[x1, . . . , xn] = n.

Proof. Let P1 ⊆ · · · ⊆ Pd be a chain of primes in R. Then in R[x] we have the chain P1R[x] ⊆
· · · ⊆ PdR[x] ⊆ PdR[x] + (x). Note that PdR[x] + (x) is prime because modding R[x] by
it gives R/Pd, a domain. So dim R[x] ≥ 1 + dim R. For the other inequality, it suffices to
show that the codimension of a maximal ideal in R[x] is at most the codimension of its
intersection with R + 1. This can be done, though it’s slightly involved. �

For the rest of the class we’ll talk about regular local rings. Let R be a local ring of
dimension d with maximal ideal m. Then, by the PIT, m can’t be generated by fewer than d
elements. m is generated by exactly d elements if and only if it’s generated by a system of
parameters, by definition. In this case, R is called regular and m’s generators form a regular
system of parameters.

Example 23.3. Let R(C[x, y]/(y2− x3))(x, y). (x, y) isn’t principal in R, but (x, y)2 =

(x2, xy, y2) ⊆ (x). So dim R is 1 (it’s not 0 because it’s a domain and has another
prime ideal), and x is a system of parameters. Notably, this is a local ring that’s not
regular.

Geometrically, regular local rings correspond to smooth points on schemes and vari-
eties.

Proposition 23.4. If R is a regular local ring, it’s an integral domain.

Proof. Let m ⊆ R be the maximal ideal. We induct on dim R. If dim R = 0, then m = 0
and R is a field. Assume dim R = d > 0. We know m2 6= m, by Nakayama. By prime
avoidance, we can find x ∈ m that avoids the (finitely many) minimal primes of R and
m. Now set S = R/(x), and let n = mS be the maximal ideal of S. x isn’t in any minimal
primes of R, so dim S > dim R. In order to induct, we need to show that S is regular. This
is kind of a pain, but it can be done. �

Definition 23.5. A sequence x1, . . . , xd ∈ R, not necessarily a local ring, is called a regular
sequence if (x1, . . . , xd) ( R and xi + 1 is always a nonzerodivisor in R/(x1, . . . , xi).

Example 23.6. In C[x, y, z], we have that x, y(1− x), z(1− x) is a regular sequence
but y(1− x), z(1− x), x is not a regular sequence. So order matters. In a local ring it
turns out that order doesn’t matter.

Corollary 23.7. If x1, . . . , xd is a regular system of parameters in a regular local ring, then
x1, . . . , xd is a regular sequence.
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Proof. For each i, R/(x1, . . . , xi) is local of dimension at least d− i, by the PIT. The maximal
ideal is generated by xi+1, . . . , xd, so indeed the dimension equals d− i. Then the quotient
is regular and therefore an integral domain. �
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