
Math 532: Combinatorial Analysis

Jason Fulman

Fall 2022

Welcome to Math 532: Combinatorial Analysis. Here’s some important information:

• The textbook we’ll be using is A course in enumeration, by M. Aigner. It’s a great
book, from which the homework problems will be drawn.

• There are 3 homework assignments and 2 midterms.

• Office hours are Monday 3-5pm and Friday 12-1pm in KAP 424D.

• These notes were taken by Julian and are sure to contain some typos and omissions,
due only to Julian.

1



Math 532: Combinatorial Analysis Fall 2022

Contents

1 Monday, August 22 5
1.1 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Wednesday, August 24 7
2.1 Multinomial coefficients (and compositions) . . . . . . . . . . . . . . . . . . 7
2.2 Cycles of permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Friday, August 26 9
3.1 Cycle index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Monday, August 29 11
4.1 Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Descents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Card shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Wednesday, August 31 13
5.1 Riffle shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Friday, September 2 15
6.1 Shelf shuffling machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Card guessing with complete feedback . . . . . . . . . . . . . . . . . . . . . 16
6.3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Wednesday, September 7 17
7.1 Young tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Friday, September 9 19
8.1 Longest increasing subsequence . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2 Inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Monday, September 12 20
9.1 Inclusion and exclusion II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

10 Wednesday, September 14 21
10.1 Circular sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

11 Friday, September 16 22
11.1 Mobius inversion on posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

12 Monday, September 19 24
12.1 Mobius inversion on posets II . . . . . . . . . . . . . . . . . . . . . . . . . . 24

12.1.1 Application: random walks . . . . . . . . . . . . . . . . . . . . . . . 25

13 Wednesday, September 21 26
13.1 Random walks II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13.2 Braid arrangement and card shuffling . . . . . . . . . . . . . . . . . . . . . 27

14 Friday, September 23 27
14.1 General theory of hyperplane walks . . . . . . . . . . . . . . . . . . . . . . . 27

2



Math 532: Combinatorial Analysis Fall 2022

15 Monday, September 26 28
15.1 Generating functions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

15.1.1 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

16 Wednesday, September 28 30
16.1 Set partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

17 Friday, September 30 33
17.1 Generating functions III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
17.2 Exponential generating functions . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Monday, October 3 36
18.1 Exponential formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

18.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

19 Wednesday, October 5 38
19.1 Exponential formula II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
19.2 Lagrange inversion formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

20 Friday, October 7 40
20.1 Generating functions for probability . . . . . . . . . . . . . . . . . . . . . . 40

20.1.1 Moment generating functions . . . . . . . . . . . . . . . . . . . . . . 40

21 Monday, October 10 42
21.1 Homework postmortem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
21.2 Generating functions for probability II . . . . . . . . . . . . . . . . . . . . . 43

22 Wednesday, October 12 45
22.1 Polya theory of counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

23 Monday, October 17 47
23.1 Polya theory II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

24 Wednesday, October 19 48
24.1 Polya theory III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
24.2 Random matrices over Fp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

25 Friday, October 21 48
25.1 Random matrices over Fp II . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

26 Monday, October 24 49

27 Wednesday, October 26 50
27.1 Random matrix theory for compact Lie groups . . . . . . . . . . . . . . . . 50
27.2 Error-correcting codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

28 Friday, October 28 51
28.1 Error-correcting codes II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

28.1.1 Weight enumerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

29 Monday, October 31 52
29.1 Error-correcting codes III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

29.1.1 Hadamard matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



Math 532: Combinatorial Analysis Fall 2022

30 Wednesday, November 2 53
30.1 Hadamard matrices II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
30.2 Pigeonhole principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

31 Friday, November 4 55
31.1 Double counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

32 Monday, November 7 56
32.1 Combinatorics for topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

32.1.1 Sperner’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

33 Wednesday, November 9 57
33.1 Lattice paths and determinants . . . . . . . . . . . . . . . . . . . . . . . . . 57

34 Monday, November 14 58
34.1 Gessel-Viennot lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

35 Wednesday, November 16 59
35.1 Symmetric function theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

35.1.1 Monomial symmetric functions . . . . . . . . . . . . . . . . . . . . . 59
35.1.2 Elementary symmetric functions . . . . . . . . . . . . . . . . . . . . 59

36 Friday, November 18 60
36.1 Symmetric function theory II . . . . . . . . . . . . . . . . . . . . . . . . . . 60

36.1.1 Complete symmetric functions . . . . . . . . . . . . . . . . . . . . . 60

37 Monday, November 28 61
37.1 Schur functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

38 Wednesday, November 30 62
38.1 Schur functions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

39 Friday, December 2 63
39.1 Schur functions III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
39.2 Walks on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Index 65

4



Math 532: Combinatorial Analysis Fall 2022

§1 Monday, August 22

§1.1 Generating functions

We’re gonna kick things off by talking about generating functions, which are useful for
studying sequences of numbers.

Example 1.1

Find a simple expression for the generating function

F (x) = ∑
n≥0

anx
n

where a0 = a1 = 1 and an = an−1 + an−2 when n ≥ 2.

Solution. We have

F (x) = ∑
n≥0

anX
n

= 1 + x +∑
n≥2

anx
n

= 1 + x +∑
n≥2

(an−1 + an−2)xn

= 1 + x + x∑
n≥2

an−1x
n−1 + x2 ∑

n≥2
an−2x

n−2

= 1 + x + x(F (x) − 1) + x2F (x).

So F (x) = 1
1−x−x2 , and later on we’ll extract useful information from this formula.

Example 1.2

Find a simple expression for the generating function F (X) = ∑n≥0
anx

n

n!
with a0 = 1

and an+1 = an + n ⋅ an−1 for n ≥ 0.

Solution. Since we have an n! in the denominator, this is known as an exponential
generating function. To start, let’s multiply the recurrence relation by xn/n! and sum
over all n ≥ 0. So

∑
n≥0

an+1x
n/n! = ∑

n≥0
anx

n/n! +∑
n≥0

nan−1x
n/n!

= ∑
n≥0

anx
n/n! +∑

n≥1
an−1x

n/(n − 1)!

and we have F ′(x) = F (x) + xF (x) = (1 + x)F (x). And it turns out that the unique

solution to this differential equation satisfying F (0) = 1 is F (x) = ex+x2/2.

Example 1.3

Find the unique sequence (ai)i∈N with a0 = 0 and ∑nk=0 akan−k = 1 ∀n ∈ N.
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Solution. Multiply both sides of our relation by xn and sum over n ≥ 0. Letting
F (x) = ∑n≥0 anxn, we get F (x)2 = 1

1−x . So,

F (x) = (1 − x)−1/2

= ∑
n≥0

(−1/2
n

)(−1)nxn

= ∑
n≥0

−1
2 ⋅ −32 . . .

−(2n−1)
2

n!
(−1)nxn

So an =
1 ⋅ 3 ⋅ 5 . . . (2n − 1)

2nn!
.

But why are generating functions useful? For example, say we know f(n) has the

property that ∑n≥0 f(n)xn/n! = ex+x2/2. Then this gives information about the sequence
f(n).

1. Differentiating the generating function recovers the recursion for f(n). Indeed,

∑
n≥1

f(n)xn/n! = ex+x
2/2

= (1 + x)∑
n≥0

f(n)xn/n!

Equating the coefficients of xn/n! on both sides, we get f(n+1) = f(n)+n ⋅f(n−1)
for n ≥ 1.

2. We can get a formula for f(n), by using the fact that ex+x
2/2 = exex2/2. Indeed,

∑
n≥0

f(n)xn/n! = exex
2/2

= ∑
n≥0

xn/n! ∑
n≥0

x2n/(2nn!).

So f(n) = ∑i≥0,i even (n
i
) i!
2i/2(i/2)! . Then, letting j = i/2, we have

f(n) =∑
j≥0

( n
2j

)(2j)!
2jj!

.

3. We can use generating functions to prove that f(n) ≈ 1√
2
nn/2e−n/2+

√
n−1/4.

Example 1.4

Prove that ∑ni=0 (
a
i
)( b
n−i) = (a+b

n
).

Solution. We use generating functions.

n

∑
i=0

(a
i
)( b

n − i
) = coefficient of xn in ∑

i≥0
(a
i
)xi∑

j≥0
(b
j
)xj

= coefficient of xn in (1 + x)a(1 + x)b

= coefficient of xn in (1 + x)a+b

= (a + b
n

)
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§1.2 Binomial coefficients

Proposition 1.5

Let (n
k
) denote the number of k-element subsets of {1, . . . , n}. Then (n

k
) = n!

k!(n−k)! .

Proof. Let N(n, k) be the number of ways of choosing a k-element subset T from
{1, . . . , n} and then ordering the elements of T . On the one hand, you can pick T
in (n

k
) ways, after which you order. You have k choices for the first element of T ,

k − 1 for the second element, and so on. So N(n, k) = (n
k
)k!. On the other hand,

N(n, k) = n ⋅ (n − 1) . . . (n − k + 1). The claim following immediately.

§2 Wednesday, August 24

§2.1 Multinomial coefficients (and compositions)

Last time we talked about binomial coefficients; there are also multinomial coefficients,
which are certainly worth knowing about.

Definition 2.1 — The multinomial coefficient ( n

a1 a2 . . . ak
) is the number of

ways of taking an n-element set and placing a1 of its elements in category 1, a2 of
its elements in category 2, etc.

Notably, the only interesting case is that in which ∑ai = n. Otherwise, the multinomial
coefficient just comes out to 0.

Theorem 2.2

( n

a1 a2 . . . ak
) = n!

a1!a2! . . . ak!
when ∑ai = n.

Proof. By picking each category’s elements in order, we have

( n

a1 a2 . . . ak
) = ( n

a1
)(n − a1

a2
)(n − a1 − a2

a3
). . . .

Most terms cancel here and we’re left with the desired result. Alternatively, we can
identify the permutations in Sn with partitions of an n-element set, and the fibers of this
(surjective) map all have size ∏i ai!.

Corollary 2.3

(X1 + ⋅ ⋅ ⋅ +Xm)n = ∑ai ∣ ∑ai=n ( n
a1 a2 ... am

)Xa1
1 . . .Xam

m

Proof sketch. Think about the the number of ways to get an Xa1
1 . . .Xam

m term; you need
to grab a1 many of the X1’s, then a2 many of the X2’s, and so on.
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Example 2.4

The number of paths from (0,0) to (a, b) that use only (0,1) or (1,0) moves is
(a+b
a
) = (a+b

b
), since you just need to choose which of the steps move right (or move

up).

Example 2.5

A composition of n is a sequence (a1, . . . , ak) of positive integers such that ∑ai = n.
For instance, there are 8 compositions of 4: 4, 2 + 2, 1 + 3, 3 + 1, 1 + 1 + 2, 1 + 2
+ 1, 2 + 1 + 1, 1 + 1 + 1 + 1. Can we count the number of compositions of n?

Proof. If a composition has k parts, we call it a k-composition. We can define a map:

φ ∶ {k-compositions of n}Ð→ {k − 1 element subsets of [n − 1]}
(a1, . . . , ak)z→ {a1, a1 + a2, . . . , a1 + ⋅ ⋅ ⋅ + ak−1}

And you can check that this is a bijection, so the number of k-compositions of n is (n−1
k−1).

Then, as an exercise, you can deduce that the total number of compositions of n is
2n−1.

Example 2.6

A weak composition of n into k parts is a solution to ∑xi = n where the xi are
merely non-negative (rather than positive). Count them.

Proof. Set yi = xi + 1 for all i. Then the yi are exactly a k-composition of n + k, and we
can use our solution to the previous example.

§2.2 Cycles of permutations

As usual, Sn = AutSet({1, . . . , n}), and we’ll make use of cycle notation for permutations.
There are tons of questions about cycles you can ask, and this is an active area of research.

Proposition 2.7

The number of π ∈ Sn with k many cycles equals the number of π ∈ Sn with k left to
right records (i.e., values j with π(j) > π(i) for all i < j).

Proof. It’s a bit of a chore to write this out precisely and in full generality, but there’s
a set automorphism φ on Sn such that the number of cycles of π is the number of
left-to-right records of φ(π).

Moving forward, let’s write ci(π) for the number of length i cycles of π. So if
π = (1 3)(2 5 4)(6)(7 8), then c1(π) = 1, c2(π) = 2, and c3(π) = 1.

Theorem 2.8

Fix c1, . . . , cn ∈ N. If ∑i ici = n, then the number of π ∈ Sn with ci many i-cycles is
n!

∏i i
ci(ci!)

.

8
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Remark 2.9. The condition that ∑i i ⋅ ci = n in Theorem 2.8 is a basic coherence condition
that ensures than any π ∈ Sn with ci many i-cycles exists. For instance, no π ∈ Sn can have
several n-cycles.

Proof of 2.8. Define a map φ ∶ Sn → Sn that sends π = (π(1), . . . , π(n)) to the new map
that starts with c1 many 1-cycles, then c2 many 2-cycles, and so on (constructed by
placing all the 1-cycles at the beginning of the tuple representation of π, followed by the
2-cycles, etc.). In particular, φ(π) takes the form

φ(π) =

1-cycles
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(φ(1)) . . . (φ(c1)) (φ(c1 + 1) φ(c2 + 2)) . . . (φ(c1 + 2 ⋅ c2 − 1) φ(c1 + 2 ⋅ c2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2-cycles

. . .

Then φ clearly surjects, and its fibers have size ∏i i
ci(ci!), because there are (ci!) many

ways to collectively permute the ci many i-cycles and i many ways to translate the
symbols in each i-cycle.

This result is the key to using generating functions to study cycles, which will be the
subject of next class.

§3 Friday, August 26

§3.1 Cycle index

Last time we saw that when ∑i i ⋅ ci = n, then the number of permutations with ci many

i-cycles is
n!

∏i i
ci(ci!)

.

Theorem 3.1 (Cycle index)

1 +∑
n≥1

un

n!
∑
π∈Sn

x
c1(π)
1 . . . xcn(π)n = ∏

m≥1
exmu

m/m

Proof. Take the coefficient of un∏i x
ci
i on each side of the equation. If ∑ i ⋅ ci ≠ n, then

you get 0 on both sides. If ∑ i ⋅ ci = n, then on the left hand side you get 1
n! times the

number of π ∈ Sn with ci many i-cycles. By the previous theorem, that product is

1

n!
⋅ n!

∏ ici(ci!)
= 1

∏ ici(ci!)
.

Using the Taylor expansion of ez for the right hand side, you also get 1
∏ ici(ci!) .

Remark 3.2. Note that the fixed points of π ∈ Sn correspond exactly to its 1-cycles.

Now let’s look at some examples to see why this theorem is useful.

Example 3.3 1. Compute the proportion of π ∈ Sn with no fixed points, known
as derangements.a We use the cycle index theorem. Setting x1 = 0 and all

9
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the other xi = 1, we get that

1 +∑
n≥1

un(proportion of derangements) = ∏
m≥2

eu
m/m

= 1

eu
∏
m≥1

eu
m/m

= 1

eu
eu+u

2/2+u3/3+...

= 1

eu
e− log(1−u)

Taking the coefficient on both sides, we see that the proportion of derangements
in Sn is

coeff( 1

eu(1 − u)
, un) =

n

∑
i=0

coeff(e−u, ui)

=
n

∑
i=0

(−1)i/i!

≈ e−1.

Some people find it fairly surprising that this tends to a constant (other than
0)!

2. Compute the expected value of c1(π ∈ Sn) as a function of n ∈ N. (That is, the
average number of fixed points of a random permutation). Once again we use
the cycle index. Set x1 = x and all other xi = 1. Then we get

1 +∑
n≥1

un

n!
∑
π∈Sn

xc1(π) = exu ∏
m≥2

eu
m/m

= e
xu

eu
∏
m≥1

eu
m/m

= exu

(1 − u)eu
.

Differentiating with respect to x and setting x = 1, we get on the left a value of

∑
n≥1

un

n!
∑ c1(π) = ∑

n≥1
unE(c1).

On the right we get u
1−u . For n ≥ 1, looking at the coefficient of un on both

sides, we get E(c1) = 1.

aWe’ll count these again later on qain the course using inclusion-exclusion.

Recall now that a random variable Z is said to follow a Poisson(λ) distribution if for

all k ∈ Z≥0, P (Z = k) = λk

k!eλ
.

Theorem 3.4

As n→∞, the distribution of c1(π ∈ Sn) tends to a Poisson(1) random variable.

Proof sketch. Let Z be Poisson(1). Then for all integers j ≥ 1, E(Z(Z−1) . . . (Z−j+1)) = 1

10
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— which follows fairly directly from the definition of its PMF (probability mass function).
Let’s compute the falling moments of c1(π). From the previous example, we have
1 +∑n≥1 u

n

n! ∑π x
c1(π) = exu

(1−u)eu .
Differentiating j times with respect to x and setting x = 1, we get

1 +∑
n≥1

un

n!

π

c 1
(c1 − 1) . . . (c1 − j + 1) = uj

1 − u
.

So for n ≥ j, E(c1(c1 − 1) . . . (c1 − j + 1)) = 1. S for all fixed j, as n →∞, we have that
the jth falling moments conicide. Then, by the method of moments, we conclude that c1
approaches a Poisson distribution as n→∞.

Example 3.5

For permutations π, let c(π) equal the total number of cycles in π. In the cycle
index theorem, set all xi = x. Then

1 +∑
n≥1

un

n!
∑
π∈Sn

Xc(π) = ∏
m≥1

exu
m/m

= (∏
m≥1

eu
m/m)x

= (1 − u)−x (from earlier examples)

Equating the coefficients of un on both sides, we get that

1

n!
∑
π∈Sn

xc(π) = x(x + 1) . . . (x + n − 1)
n!

,

since if f(u) = ∑n dnun, then dn = 1
n!f
(n)(u = 0).

And we can use this to prove that c(π) is asymptotically normal with mean 1+ 1
2 +⋅ ⋅ ⋅+

1
n

and known variance.

§4 Monday, August 29

§4.1 Inversions

Definition 4.1 — For a permutation π, let inv(π) equal the number of pairs in π
that are out of order, i.e., (i, j) with i < j and π(i) > π(j).

Given an integer sequence (a1, . . . , an) with 0 ≤ ai ≤ n − i, we’ll create a permutation
on n symbols. Assume n,n − 1, . . . , n − i + 1 have been inserted. Then insert n − i so that
it has an−i elements to its left. When n = 0 and (ai)i = (1, 5, 2, 0, 4, 2, 0, 1, 0), we generate

11
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π like so:

9

98

798

7968

79685

479685

4739685

47396285

417396285

Call (a1, . . . , an) the inversion table of π. In particular, an equals the number of
inversions of the form (n, ) in π.

Proposition 4.2

Let Tn = {(a1, . . . , an) ∣ 0 ≤ ai ≤ n − i}. Then the map I ∶ Sn → Tn sending a
permutation to its inversion table is a bijection.

Corollary 4.3

∑π∈Sn q
inv(π) = (1)(1 + q)(1 + q + q2) . . . (1 + q + ⋅ ⋅ ⋅ + qn−1).

Proof. If I(π) = (a1, . . . , an), then inv(π) = ∑ai. Thus,

∑
π∈Sn

qinv(π) =
n−1
∑
a1=0

n−2
∑
a2=0

⋅ ⋅ ⋅
0

∑
an=0

q∑ai

= (
n−1
∑
a1=0

qa1)(
n−2
∑
a2=0

qa1) . . . (
0

∑
an=0

qan)

as desired.

Remark 4.4. (1)(1 + q) . . . (1 + q + ⋅ ⋅ ⋅ + qn−1) is a q-analog of n!, and is denoted [n]!.
Moreover, (1 + q + ⋅ ⋅ ⋅ + qn−1) is a q-analog of n, denoted [n]. So [n]! = [1][2] . . . [n].

Furthermore, note that n! counts the number of sequences ∅ = S0 ⊊ S1 ⊊ ⋅ ⋅ ⋅ ⊊ Sn = {1, . . . , n}
such that ∣Si∣ = i for all i. Meanwhile, [n]! counts the number of sequences 0 = V0 ⊊ V1 ⊊ ⋅ ⋅ ⋅ ⊊
Vn where the Vi are n-dimensional vector spaces over Fq with dim(Vi) = i ∀i.

§4.2 Descents

What we discuss next will have applications to card shuffling.

Definition 4.5 — If π ∈ Sn and π(i) > π(i + 1), then we say that π has a descent
at position i. We define D(π) to be the descent set of π, with D(π) = {i ∣ π(i) >
π(i + 1)}.

12
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Let α(S) be the number of π ∈ Sn with D(π) ⊆ S. Similarly, let β(s) be the number
of π ∈ Sn with D(π) = S. So α(S) = ∑T⊆S β(T ). As we’ll see, this relation can actually
be inverted to give β(S) = ∑T⊆S(−1)∣S−T ∣α(T ).

Proposition 4.6

Let S = {s1, . . . , sk} ⊆ {1, . . . , n − 1}. Then α(S) = ( s
s1 s2−s1 s3−s2 ... n−sk

).

Proof. To make π ∈ Sn with D(π) ⊆ S, choose π(1) < π(2) < ⋅ ⋅ ⋅ < π(s1) in (n
s1
) many

ways. Next, choose π(s1 + 1) < ⋅ ⋅ ⋅ < π(s2) in (n−s1
s2−s1) many ways. Continuing in this way,

we see that the descents of π are in S, and

α(S) = (n
s1

)(n − s1
s2 − s1

) . . .(n − sk
n − sk

)

as desired.

Let A(d, k) be the number of π ∈ Sd with exactly k − 1 descents. Let An(x) =
∑π∈Sn x

1+d(π) = ∑dk=1A(d, k)xk.

Remark 4.7. We say π ∈ Sn has an exceedance at position i if π(i) > i. Then for all k,
it turns out that the number of π ∈ Sn with k descents equals the number of π ∈ Sn with k
exceedances.

§4.2.1 Card shuffling

Now let’s look at applications to card shuffling. Say we take a deck of n cards, cut it
“about in half” and “riffle the two halves together.” How many times do you need to do
this to “thoroughly mix” the cards?

First we need to make these notions precise: by “about in half,” we mean to the cut
the deck into 2 piles where the breakpoint card c has distribution (n

c
)/2n. So this is

just the binomial distribution, a discrete analogue of the bell curve. To define “riffle,”
suppose at a given time step that the left hand pile has A cards while the right hand pile
has B cards. Then with probability A

A+B we drop a card from the left pile and B
A+B we

drop a card from the right pile.
To quantify mixing, let P and Q be probability distributions on a finite set X. The

total variation distance between P and Q is ∣∣P − Q∣∣TV = 1
2 ∑x∈X ∣P (x) − Q(x)∣.

Equivalently, ∣∣P −Q∣∣TV = maxA⊆X ∣P (A) −Q(A)∣.
Now let Q∗k be the distribution on permutations after k riffle shuffles started at

the identity, and let U be the uniform distribution on Sn. Then the goal is to study
∣∣Q∗k −U ∣∣TV as a function of k and n.

§5 Wednesday, August 31

§5.1 Riffle shuffling

Last time we defined the riffle shuffle, in which you cut the cards using the binomial
distribution and drop the cards according to each pile’s size. Our question is: how many
riffle shuffles do we need to thoroughly mix the cards? That is, how does the total
variation distance with the uniform distribution on Sn evolve as a function of number of
riffle shuffles? For instance, given ε and n, how large should k be so that ∣∣Q∗k−U ∣∣TV < ε?

13
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More generally, we can define an a-shuffle, in which the deck is cut into a many
piles, some of which may be empty. So the chance of pile sizes j1, j2, . . . , ja is simply
( n
j1 j2 ... ja

) ⋅ 1
an . Then you drop cards with probability proportional to the pile size.

There are 2 equivalent descriptions of a-shuffles. One is the inverse description: for
each card, pick a random integer from {1, . . . , a}. Then move the cards labeled 1 to the
top of a list, those labeled 2 are put right afterwards, etc. This defines a permutation,
whose inverse yields an a-shuffle.

There’s also a geometric description, in which you drop n points independently and
uniformly in [0,1] and label them X1 <X2 < ⋅ ⋅ ⋅ <Xn. Apply the map φ ∶ [0,1]→ [0,1]
defined by x↦ az mod 1. Then the Xi are permuted, yielding a random permutation.
And this distribution on permutations is the same as an a-shuffle.

Theorem 5.1

These 3 descriptions yield the same distribution on permutations, and an a-shuffle
followed by a b-shuffle is the same as an ab-shuffle.

Corollary 5.2

Doing k many 2-shuffles is the same thing as one 2k-shuffle.

Theorem 5.3

Let d(π) equal the number of descents of a permutation π. Then the chance that an
a-shuffle results in a permutation π is

(a + n − d(π
−1) − 1

n
)/an.

Returning to our original problem, we have that

∣∣Q∗k −U ∣∣TV = 1

2
∑
π∈Sn

∣Q∗k − 1

n!
∣

= 1

2
∑
π

∣(2k + n − d(π) − 1

n
)/2kn − 1

n!
∣

= 1

2

n−1
∑
j=0

A(n, j)∣(2k + n − j − 1

n
)/2kn − 1

n!
∣.

Here we’re using A(n, j) to denote the number of π with j descents, which is slightly
different than we defined it previously. And A(n, j) can be computed efficiently using
a recurrence relation, so the quantity ∣∣Q∗k −U ∣∣TV can be computed efficiently. When
n = 52, we get the following table.

k 1 2 3 4 5 6 7 8 9 10

∣∣Q∗k −U ∣∣TV 1.000 1.000 1.000 1.000 0.924 0.614 0.334 0.167 0.085 0.043

This is pretty remarkable – shuffling a deck 1, 2, 3, or even 4 times does practically
nothing! There are even some magic tricks that exploit this fact.

14
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Theorem 5.4

Let Pn,a(π) equal the probability of π after an a-shuffle of n cards, and let µ(d) be
the Mobius function from number theory. That is,

µ(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 d = 1,

0 (p, d) = p>1 for a prime p,

(−1)r d is a product of r distinct primes.

Let fja = 1
j ∑d∣j µ(d)a

j/d. Then we get a “cycle index” of the form

1 +∑
n≥1

un ∑
π∈Sn,a

Pn,a(π)∏
i≥1
x
ci(π)
i =∏

j≥1
(1 −

ujxj

aj
)−fja .

Corollary 5.5

There are two corollaries here.

1. As a→∞, we recover the ordinary cycle index of Sn.

2. Arguing as we did for uniform permutations, we have that

E(c1(π)) = 1 + 1

a
+ 1

a2
+ ⋅ ⋅ ⋅ + 1

an−1
.

As a → ∞, this tends to 1 as expected. If a = 1, we get E(c1(π)) = n, as
expected.

§6 Friday, September 2

§6.1 Shelf shuffling machines

Say you have m shelves. Now deal cards from the bottom of a deck of cards one at a
time, sending each card to a uniformly random shelf. Half the time you place the card
on top of the cards on the shelf and half the time you place it below. Once you’re done,
you assemble the cards on the shelves into one pile (i.e., first all the cards on the top
shelf, then all the cards on the second shelf, etc.).

Our question is: do m = 10 shelves adequately mix 52 cards? This is a real question
that a gambling company once had!

Theorem 6.1

The probability that a shelf shuffler with n cards and m shelves outputs a permutation
π is equal to

4v(π)+1

2(2m)n
m−1
∑
a=0

(n +m − a − 1

n
)(n − 1 − 2v(π)

a − v(π)
)

where v(π) is the number of valleys of π (i.e., local minima in {2, . . . , n − 1}).

15
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Example 6.2

Say m = 1 in the previous theorem. Then

P (π) = 4v(π)+1

2n+1
(n
n
)(n − 1 − 2v(π)

0 − v(π)
).

So if v(π) ≥ 1, we get P (π) = 0. And if v(π) = 0, we get that P (π) = 4
2n+1

= 1
2n−1

. As
an aside, note that when v(π) = 0, we call π unimodal. An immediately corollary
is that there are 2n−1 unimodal π ∈ Sn.

Furthermore, there’s a result describing the total variation distance of a shelf shuffling
machine with the uniform distribution on Sn, as a function of n and m. Setting n = 52
and varying m, we get the following (fairly surprising!) table.

m shelves 10 20 30 50 100 200

TV distance 1.000 0.720 0.341 0.159 0.041 0.010

So the bad news is that shuffling with 10 shelves doesn’t do much. The good news
is that shuffling with m1 shelves followed by shuffling with m2 shelves is the same as a
single shuffle with 2 ⋅m1 ⋅m2 shelves. So using a 10-shelf shuffler twice is the same as
using a single 200 shelf shuffler, which indeed adequately mixes the cards.

Unfortunately, it turns out that the company didn’t really care about total variation
distance. They did care about card guessing, though, to which we turn to now.

§6.2 Card guessing with complete feedback

Say you have a deck of cards and deal them face up on a table, one at a time. Before
each card is shown, you guess the value of the card. Let

Xi =
⎧⎪⎪⎨⎪⎪⎩

1 ith guess is correct;

0 else.

Furthermore, let T =X1 + ⋅ ⋅ ⋅ +Xn be the total number of correct guesses. If the deck is
perfectly mixed, what’s the best strategy? Well, all you can do is guess a card that you
haven’t seen yet. This gives the following properties:

1. P (Xi = 1) = 1
n−i+1 and so E(T ) ≈ log(n) + γ, where γ is Euler’s constant.

2. As the Xi are independent under this strategy, Var(T ) = 1
2(1 −

1
2) +

1
3(1 −

1
3) + ⋅ ⋅ ⋅ ≈

log(n) + γ − π2

6 .

3. Renormalized by its mean and variance, T is asymptotically normal.

When n = 52, T has mean roughly 4.5 and standard deviation roughly
√

2.9. So T is
between 2.7 and 6.3 roughly 70% of the time. For a 10-shelf shuffler, however, there’s a
strategy that lets you guess around 9.3 correct cards. This convinced the company that
their machines weren’t good!

§6.3 Partitions

Let p(n) be the number of partitions of n, i.e, (a1, . . . , ak) with ai ≥ 0, ai ≥ ai+1, and

∑ai = n.
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Theorem 6.3

∑n≥0 p(n)xn =∏k≥1
1

1−xk .

Theorem 6.4

The number of partitions of n into k parts equals the number of partitions of n with
largest part k.

Proof. Define the conjugate of a partition by reflecting its diagram. This is a bijection
on the collection of partitions of n, and a partition has k parts if and only if its conjugate
has largest part k. The result follows.

Theorem 6.5

For any n, the number of partitions with all parts odd is equal to the number of
partitions into unequal parts.

Proof. This is an exercise for the long weekend!

§7 Wednesday, September 7

Last time we started talking about partitions, i.e., we let p(n) equal the number of
(a1, . . . , ak) with ai ≥ 0, ai ≥ ai+1, and ∑ai = n. We also mentioned Theorem 6.5, that
the number of partitions of n into odd parts is the number of partitions of n into distinct
parts. Let’s actually prove that now.

Proof of Theorem 6.5. On the one hand, the generating function for the number of
partitions into odd parts is ∏m≥1

1
1−x2m−1 . On the other, the generating function for the

number of partitions into distinct parts is ∏k≥1(1 + xk). So it suffices to show that these
things are equal. Note

∏
k≥1

(1 + xk) = ∏
m≥1

1 − x2m

1 − xm

= ∏
m odd

1

1 − xm

= ∏
m≥1

1

1 − x2m−1
.

Now consider 1
p(x) for p(x) =∏k≥1

1
1−xk . Then p(x) =∏k≥1(1 − xk). So the coefficient

of xn in 1
p(x) is pe(n) − po(n), where pe(n) is the number of partitions of n into an even

number of distinct parts and likewise for po(n) (into an odd number of distinct parts).

Furthermore, Euler proved that pe(n) = po(n) unless n = 3m2−m
2 or n = 3m2+m

2 , in which
case pe(n) − po(n) = (−1)m. This then gives the following theorem.
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Theorem 7.1

∏k≥1(1 − xk) = 1 +∑m≥1(−1)m(x(3m2−m)/2 + x(3m2+m)/2)

Corollary 7.2

Let p(n) = 0 for n < 0. Then for n ≥ 1,

p(n) = ∑
m≥1

(−1)m+1(
p(n − 3m2−m

2 )
p(n − 3m2+m

2 )
).

Here’s a famous, deep theorem that belongs to analysis.

Theorem 7.3

limn→∞
1√
n

log(p(n)) = π
√

2/3.

§7.1 Young tableau

If λ is a partition of n, then a young tableau is given by filling the boxes of the diagram
of λ by the numbers 1, 2, . . . , n so that each number if used once and the numbers increase
along rows and down the columns. Here’s an example.

[put picture here]

Theorem 7.4 (Hook-length formula)

The number of Young tableau of shape λ is

fracn!∏
x

h(x)

where x ranges over boxes of λ and h(x) is the hook length of x, defined as 1 plus
the number of boxes in the same row as x to the right of x plus the number of boxes
in the same column as x and below x. (I.e., the hook length counts the number of
boxes in the L-shaped hook whose corner is x).

What are some of the reasons for studying Young tableau?

1. They arise from the representation theory of the symmetric group. Here, the
irreducible representations correspond to partitions λ of n. Furthermore, the
dimension of the corresponding representation is equal to the number of Young
tableau of shape λ.

2. These numbers are useful in analyzing the mixing time of random walks, such as
the “random transposition walk” on Sn.

3. We can define a probability measure on partitions of size n, called the Plancherel
measure. Namely, let dλ equal the number of Young tableau of shape λ. Then
define P (λ) = (dλ)2/n!. We can show using algebra that ∑λ ∣ ∣λ∣=n P (λ) = 1. Why
is this measure interesting? Let L(π) be the longest increasing subsequence of π.
We’ll later see that P (L(π) = k) is the probability that a λ with the Plancherel
measure has its first row of length k.
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§8 Friday, September 9

§8.1 Longest increasing subsequence

Recall that last time we defined L(π) to be the length of the longest increasing subsequence
of π. Why should we study L(π)? There’s a couple reasons.

(a) We can use L(π) to define a metric on permutations, of the form

d(π,σ) = n −L(πσ−1).

(b) L(π) is related to patience sorting, which is a model of solitaire. In particular,
say you have a deck of n cards {1, 2, . . . , n}. Shuffle the cards, turn them up one at
time, and place them on a collection of piles according to the following rules:

1. You can place a low card on a higher card.

2. If you turn up a card higher than any cards being shown, then you must start
a new pile to the right of the existing pile.

The goal of the game is to have as few piles as possible. So what’s the optimal
strategy, and what’s the distribution of the number of piles given optimal play?
The optimal strategy is intuitive: drop a card on the leftmost pile that you can.
Then for any π, you end up with exactly L(π) many piles.

Remark 8.1. One can use patience sorting to actually sort cards. First note that at
the conclusion of the game, the card 1 must be showing, so remove it from the top of
a pile. Then card 2 must be showing, so remove it and place it on card 2. And so on
and so forth.

Remark 8.2. The optimal strategy in patience sorting gives a quick way of computing
L(π); just count the number of piles!

(c) Here’s a simple question: how long does it take n passengers to board a plane with
n seats? For now, we’ll really only consider the time incurred from putting luggage
away, and assume that passengers otherwise move & sit down instantaneously.

Theorem 8.3

For any π, the boarding time of passengers arranged in order π is L(π).

(d) Finally, L(π) is connected to “amazing mathematics.” Namely, for a permutation π
drawn uniformly from Sn, then L(π) is about 2

√
n with fluctuations ±n1/6. More

precisely,

P (L(π) − 2
√
n

n1/6
)→ F (x)

where F (x) is the Tracy-Widom distribution from random matrix theory.

§8.2 Inclusion and exclusion

Say A,B are subsets of S and we want to count the elements of S ∖A ∪B. Then the
answer is not ∣S∣ − ∣A∣ − ∣B∣, since the elements of A ∩B have been subtracted twice. So
the answer is instead ∣S∣ − ∣A∣ − ∣B∣ + ∣A ∩B∣. Let’s generalize this.
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Theorem 8.4 (Inclusion exclusion)

Let E1, . . . ,Er be subsets of S with ∣S∣ = n. For any subset M of {1, . . . , r}, let N(M)
equal the number of elements in ⋂i∈M Ei. Furthermore, let Nj = ∑∣M ∣=jN(M). Then
the number of elements of S not in the Ei’s is

N −N1 +N2 −N3 + . . . + (−1)rNr.

§9 Monday, September 12

§9.1 Inclusion and exclusion II

Let’s pick things up where we left off. Recall the following theorem.

Theorem 9.1 (Inclusion exclusion)

Let E1, . . . ,Er be subsets of S with ∣S∣ = n. For any subset M of {1, . . . , r}, let N(M)
equal the number of elements in ⋂i∈M Ei. Furthermore, let Nj = ∑∣M ∣=jN(M). Then
the number of elements of S not in the Ei’s is

N −N1 +N2 −N3 + . . . + (−1)rNr. ( †)

Equivalently,
∣⋃
i

Ei∣ = N1 −N2 +N3 + . . . − (−1)rNr.

Proof. We prove the first statement. Note that if x ∈ S but x isn’t in any of the Ei, then
it contributes 1 to our sum. On the other hand, if x ∈ S and is in exactly k of the Ei’s,
then how much does is contribute to our sum? That comes out to

1 − (k
1
) + (k

2
) − . . . + (−1)k(k

k
) = (1 − 1)k = 0.

So we’re done.

Remark 9.2. If you truncate the sum in (†) after a positive (resp. negative) term, then
you get an upper bound (resp. lower bound) for the number of elements avoiding the Ei.

Example 9.3

Let dn be the number of derangements in Sn. In the previous theorem, we’ll let
S = Sn and Ei be the collection of π ∈ Sn fixing i. Then we want to compute exactly
the size of S ∖ {⋃Ei}. Note that Ni = (n

i
)(n − i)!, since we choose i many indices to

be fixed, and the size of their intersection is (n − i)!. Then

dn =
n

∑
i=0

(−1)i(n
i
)(n − i)!

= n!
n

∑
i=0

(−1)i/i!

20



Math 532: Combinatorial Analysis Fall 2022

Example 9.4

Let X be a set of size n and Y = {y1, . . . , yk} a set of size k ≤ n. How many surjections
are there from X to Y ? To use inclusion-exclusion, we set S = HomSet(X,Y ) and
Ei = HomSet(X,Y ∖ {yi}). Then we want to count the elements in S avoiding the
Ei. We get an answer of

k

∑
i=0

(−1)i(k
i
)(k − i)n.

Example 9.5

Let n = pa11 . . . parr be the factorization of n into prime powers, and let φ(n) be the
number of k ≤ n with (k,n) = 1. Find a formula for φ(n). By inclusion-exclusion,
we get:

φ(n) = n −
r

∑
i=1

n

pi
+ ∑

1≤i<j≤r

n

pipj
− . . .

= n
r

∏
i=1

(1 − 1

pi
).

So φ(12) = 12(1 − 1/2)(1 − 1/3).

Theorem 9.6

∑d∣n φ(d) = n.

Proof. Set [n] = {1,2, . . . , n}. For each m ∈ [n], we have (m,n) ∣ n. You can check that
the number of m with (m,n) = d is φ(n/d) for all d ∣ n. The result follows.

§10 Wednesday, September 14

§10.1 Circular sequences

Let’s try to count Nn, the number of circular length n sequences of 0’s and 1’s, where
two sequences are identified if one can be rotated into the other. Now let M(d) be the
number of circular sequences of 0’s and 1’s of length d that are not periodic.

Then Nn = ∑d∣nM(d) and ∑d∣n dM(d) = 2n for all n. In particular, applying Mobius

inversion to the second equation gives nM(n) = ∑d∣n µ(d)2n/d. Thus

Nn =∑
d∣n
M(d)

=∑
d∣n

1

d
∑
`∣d
µ(d/`)2`

=∑
`∣n

2`

`
∑

k∣(n/`)

µ(k)
k

= 1

n
∑
`∣n
φ(n/`)2`
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where the last line made use of the fact that
φ(m)
m = ∑d∣m

µ(d)
d . Furthermore, the boxed

equation expresses Nn as a sum of positive terms, which suggests there’s a manner other
than inclusion-exclusion to count the elements in Nn.

To do so, we’ll use Burnside’s lemma.

Theorem 10.1 (Burnside’s lemma)

Let a finite group G act on a finite set X. For each g ∈ G, let ψ(g) be the number
of elements of X fixed by g. Then the number of orbits of the action is

1

∣G∣ ∑g∈G
ψ(g).

Proof. Let’s count pairs (g, x) where g ∈ G, x ∈ X, and g ⋅ x = x. On one hand, this is

∑g∈Gψ(g). On the other hand, it’s ∑x∈X Stab(x) = ∑x∈X ∣G∣/∣OX ∣. But summing up 1
∣Ox∣

over all x ∈X just recovers the number of orbits in X. So ∑g∈Gψ(g) = 1
∣G∣ ⋅ ∣{orbits}∣, and

the claim follows.

Example 10.2

Let Nn be as above, and let G = Z/nZ. Then G acts on X, the collection of circular
sequences of length n of 0’s & 1’s, by rotation. Then Nn is exactly the number of
orbits of G on X. Let’s compute this using Burnside’s lemma.

Recall that if d ∣ n, then there are φ(n/d) integers g between 1 and n with
gcd(n, g) = d. For each such g, there are 2d circular sequences fixed by rotation by g.
So Burnside’s lemma gives

Nn =
1

n
∑
`∣n
φ(n/`)2`.

Example 10.3

Let’s count the number of colorings of faces of a cube with n colors, where 2 colorings
are considered the same if one can be rotated into the other. Here G is the number
of rotations of the cube. We don’t have enough time to complete this example today,
but we’ll pick things up next time!

§11 Friday, September 16

We’ll be starting a new topic today, which will eventually generalize both inclusion-
exclusion and Mobius inversion on the integers.

§11.1 Mobius inversion on posets

Let’s start by letting P be a partially ordered set. Now consider matrices whose rows
and columns are indexed by P . Then define the incidence algebra of P to consist of
all matrices α such that α(x, y) = 0 if x isn’t smaller than y in the partial order.
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By matrix multiplication, if α,β are in the incidence algebra of P , then

(αβ)(x, y) = ∑
z∈P

α(x, z) ⋅ β(z, y)

= ∑
z ∣ x≤z≤y

α(x, z)β(z, y)

One element of the incidence algebra is ξ, defined by ξ(x, y) = 1 if x ≤ y and 0 else.
Now let µ be the inverse of ξ, meaning ∑z ∣ x≤z≤y µ(x, z) = δxy. We can make this hold
by defining µ recursively. So µ(x,x) = 1, µ(x, y) = 0 if x isn’t smaller than y, and
µ(x, y) = −∑z ∣ x≤z≤y µ(x, z) if x < y in P . We then call µ the Mobius function of P .

Theorem 11.1 1. Let P = P(X) for a finite set X, with the partial order of
inclusion. Then

µ(A,B) =
⎧⎪⎪⎨⎪⎪⎩

(−1)∣B∣−∣A∣ A ≤ B;

0 else.

2. Let P consist of the positive divisors of an integer n, with i ≤ j if i ∣ j. Then
µ(a, b) = µ(b/a), where the right hand side µ is the Mobius function of number
theory.

3. Let P consist of all subspaces of a finite-dimensional dimension vector space
over the finite field Fq (of order q). The partial order is inclusion. Then

µ(U,W ) =
⎧⎪⎪⎨⎪⎪⎩

0 ¬(U ⊆W );
(−1)kq(

k
2
) U ⊆W,k ∶= dim(W ) − dim(U).

4. Let P consist of the partitions of an n element set, with A ≤ B if B is finer
than A. Then its Mobius function is pretty complicated :)

So why do we care about these Mobius functions? One reason is that they allow you
to do Mobius inversions on the poset P .

Theorem 11.2 (Mobius inversion on posets)

Let P be a poset and f, g, h ∶ P → R be such that for all x ∈ P , g(x) = ∑a ∣ a≤x f(a)
and h(x) = ∑b ∣ b≤x f(b). Then

1. f(x) = ∑a ∣ a≤x µ(a, x)g(a)

2. f(x) = ∑b ∣ b≥x µ(x, b)h(b)

Proof of 1. The right hand side is

∑
a ∣ a≤x

µ(a, x)g(a) = ∑
a ∣ a≤x

µ(a, x) ∑
b ∣ b≤a

f(b)

= ∑
b ∣ b≤x

f(b) ∑
a ∣ b≤a≤x

µ(a, x)

= f(x)

As ∑a ∣ b≤a≤x µ(a, x) is 0 if b ≠ x.
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Remark 11.3. A worked example with P = P(X) shows that this theorem can recover the
inclusion-exclusion principle!

Example 11.4

Let P consist of the positive divisors of an integer n with i ≤ j if i ∣ j. Then suppose
that f, g satisfying g(m) = ∑k∣m f(k) for all m dividing n. Then the Mobius inversion
of P gives

f(m) = ∑
k∣m

µ(k,m)g(k)

= ∑
k∣m

µNT (m/k)g(k)

where µNT is the Mobius function from number theory.

§12 Monday, September 19

§12.1 Mobius inversion on posets II

We’ve been talking about Mobius inversion on posets. Let’s keep it going.

Example 12.1

We showed previously that the number of bijections from an n-set to an m-set is

m

∑
k=0

(−1)m−k(m
k
)kn.

We used inclusion-exclusion, which turned out to be a special case of Mobius inversion
on posets. Let’s give a “q-analog” of this result.

Theorem 12.2

The number of linear surjections Fnq → Fmq is

m

∑
k=0

(−1)m−k [m
k
]
q

qnk+(
m−k
2
).

Here [m
k
]
q

is the number of k-dimensional subspaces of an m-dimensional vector

space over Fq.

Proof. For a subspace U ⊆ K, let f(U) be the number of linear maps whose image is
precisely U , and let g(U) be the number of linear maps whose image is contained in
U . So for all U , g(U) = ∑W ∶W⊆U f(W ). Then we use Mobius inversion on the poset of
subspaces of V . Since g(U) = qn⋅dim(U), then for all subspaces U of V , we have

f(U) = ∑
W ∶W⊆U

µ(W,U)qndim(W ).
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Now take U = V , giving us

f(V ) = ∑
W ∶W⊆U

µ(W,V )qndim(W ).

And µ(W,V ) = (−1)m−k ⋅ q(
m−k
2
), where k = dim(W ). Thus

f(V ) =
m

∑
k=0

(−1)m−k [m
k
]
q

q(
m−k
2
)qnk

and we’re done.

Definition 12.3 — A lattice L is a poset with the property that any finite set
S ⊂ L has a greatest lower bound and least upper bound.

If S = {x, y} is a two element set, let x ∩ y be the greatest lower bound of S and x ∪ y
be the least upper bound of S. We also denote 0L for the minimum of a lattice L and 1L
for the maximum.1

Theorem 12.4

Let µ be the Mobius function of a finite lattice L and let a ∈ L with a > 0L. Then

∑
x ∣ x∪a=1L

µ(0L, x) = 0.

Proof. Let
S = ∑

x∈L
∑
y≥x,a

µ(0, x)µ(y,1).

On the one hand, S = ∑x µ(0, x)∑y≥x,a µ(y, 1). Note that y ≥ a, x if and only if y ≥ x ∪ a.
So the inner sum is

∑
y≥x∪a

µ(y,1) =
⎧⎪⎪⎨⎪⎪⎩

1 x ∪ a = 1;

0 x ∪ a < 1.

Thus S = ∑x ∣ x∪a=1 µ(0, x). On the other hand,

S = ∑
y≥a

µ(y,1) ∑
0≤x≤y

µ(0, x).

But y ≥ a > 0, so y > 0 and the inner sum evaluates to 0, meaning S = 0.

Remark 12.5. We can use this theorem to derive all the formulas for Mobius functions that
we stated last time.

§12.1.1 Application: random walks

Let’s consider random walks on the chambers of a hyperplane arrangement. Recall that
a hyperplane is a (d − 1)-dimensional subspace of Rd, and an affine hyperplane is H + x
for a hyperplane H and vector x.

1Crucially, these only exist because we’re taking all our lattices to be finite.
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A collection of affine hyperplanes divides space into chambers, i.e., open d-dimensional
regions. For each hyperplane, pick a positive side and a negative side. A face is a region
on a hyperplane and on (fixed) positive or negative sides of the remaining hyperplanes.

We now define a projection of a chamber C onto a face F , written πF (C) = C ′. It’s
defined as C ′ being a chamber adjacent to F which is closest to C in terms of crossing
the fewest number of hyperplanes to get from C to C ′. (It’s not obvious that this C ′ is
unique, but it turns out to be true.)

Let {wF } be a collection of positive weights on faces summing to 1. Then we can define
a random walk on the chambers as follows. Start at C. Pick a face with probability wF .
Then move to πF (C). Repeat.

We’ll pick this up next time!

§13 Wednesday, September 21

§13.1 Random walks II

Let’s keep up with random walks on hyperplane arrangements, or rather their chambers.
Recall the process is as follows: start at a chamber C, pick a face F with probability wF ,
move to the projection of C onto F — denoted πF (C) — and repeat.

Example 13.1 (Boolean arrangement in Rd)
Let Hi = {x ∈ Rd ∣ xi = 0}. Then {Hi}i≤n divide Rd into 2d many chambers. We
index the chambers as C(ε), where ε = (ε1, . . . , εn) and ei ∈ {+,−}. Note that there
are 3d faces, as for each hyperplane, you’re either on the hyper, on its positive side,
or on its negative side.a In particular, they’re indexed by F (δ) where δ ∈ {+,−,0}d.

Now the projection map can be defined as follows. Fix F = (δ1, . . . , δd) and
C = (ε1, . . . , εd). Then C ′ = πF (C), where C ′ = (ε′1, . . . , ε′d) and

ε′i =
⎧⎪⎪⎨⎪⎪⎩

δi δi ≠ 0

εi δi = 0
.

So to get ε′, we change the coordinates of C to match those of F where F has
nonzero coordinates, and otherwise keep the coordinates of C. This is called the
Boolean arrangement.

aHere, we’re counting chambers as particular kinds of faces.

Example 13.2 (Ehrenfest urn)

We have d balls and 2 urns. To begin, all balls are in the left urn. At each time step,
pick a random ball and move it to the other urn. Then there is a parity problem; to
get from a given state back to itself, you need to use an even number of steps. To
fix this, half the time you do nothing and half the time you move as above. This is a
toy model of diffusion of a gas.

To connect this to Boolean arrangement, note that configurations of the model
correspond to d-tuples of {+,−}, according to which urn each ball is in. A step of the
walk is to pick a random coordinate: half the time you do nothing, and half the time
you switch it to its opposite. To view this as a hyperplane walk, simply set wF = 1

2d .
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§13.2 Braid arrangement and card shuffling

In Rd, let Hi,j for 1 ≤ i < j ≤ n be defined by Hi.j = {(x1, . . . , xd) ∣ xi = xj}. Then there

are (d
2
) many such hyperplanes. Inside such a hyperplane, none of the coordinates are

equal, so their relative order is constant, and we can label the chambers by permutations.
For the faces, some coordinates are equal, and the unequal ones are ordered.

[I got distracted at the end of this lecture and lost track – sorry :(]

§14 Friday, September 23

§14.1 General theory of hyperplane walks

Fix a hyperplane arrangement with face weights (i.e., the data of a hyperplane walk).
Call the face weights separating if for every hyperplane H, there’s a face F with wF > 0
such that F ∈H+ or F ∈H− (i.e., the positive and negative sides of H).

In all the examples we’ve seen, the face weights have been separating. Moreover, if the
weights aren’t separating, then the random walk lives in H, so you can restrict there.

Theorem 14.1

If the face weights of a hyperplane walk are separating, then there’s a unique
stationary distribution for the random walk.

To describe the eigenvalues of a stationary distribution, we use the intersection lattice
L, which is the poset of all possible intersections of the hyperplanes. We include the
empty intersection, which is simply Rd. So this intersection lattice L will have a Mobius
function µ.

We now state two important theorems.

Theorem 14.2

For any choice of face weights wF on a hyperplane walk, the random walk is
diagonalizable. That is, the transition matrix of the walk can be diagonalized.
Furthermore, for every ` ∈ L, there is an eigenvalue

β` = ∑
F≤`

wF .

And the multiplicity of β` is
m` = ∣µ(`,Rd)∣.

Theorem 14.3

If the face weights wF of a hyperplane walk are separating, then for any starting
chamber C,

∣∣Kr
C −Π∣∣TV ≤∑

H

βrH .

Here, ∏ is the stationary distribution of the walk, Kr
C is the distribution of the

walk after r steps starting from chamber C, and the right hand sum is ove rall
hyperplanes H in the arrangement.
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Example 14.4 (Ehrenfest urn)

The stationary distribution here is uniform, i.e., Π(C) = 1
2d

for all chambers C. The

intersection lattice has 2d elements corresponding to the possible intersections of the
d hyperplanes. Then the upper bound of Theorem 14.3 gives

∣∣Kr
c −Π∣∣TV ≤ d(1 − 1

d
)r

= elog(d)+r log(1−
1
d
)

≤ elog(d)−r/d

≤ e−r

if r ≥ d log(d). So after roughly d log(d) steps, you’re assured to be close to the
stationary distribution. And the true answer here is that roughly 1

2d log(d) steps are
necessary and sufficient to be close to stationary. One needs to consider eigenvectors
to prove this.

§15 Monday, September 26

§15.1 Generating functions II

Recall the Fibonacci numbers with F0 = F1 = 1 and Fn+1 = Fn + Fn−1. We proved in the
first lecture that ∑n≥0 Fnxn = 1

1−x−x2 . But why do we study generating functions?

1. Sometimes generating functions give you an exact formula for the numbers in your
sequence.

2. Generating functions can be used to derive recurrence relations for the coefficients.

3. They can help find averages or other statistical properties of a sequence.

4. They can give asymptotics for the numbers in the sequence.

5. They can prove unimodality or log concavity of a sequence.

6. They can help produce proofs of identities such as

n

∑
j=0

(n
j
)
2

= (2n

n
).

Example 15.1

Let a0 = 0 and an+1 = 2an + 1. Then the sequence starts with 0, 1, 3, 7, 15, 31, . . ..
That looks like an = 2n − 1, which is easy to prove by induction. But let’s study
this using generating functions. As usual, we write A(x) = ∑n≥0 anxn, multiply both
sides of our original recurrence relation by xn, and sum over all n for which the
recurrence is valid.
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On the left hand side of our recurrence, we have

∑
n≥0

an+1x
n = a1 + a2x + a3x2 + . . .

= A(x)
x

.

On the right hand side, we have

∑
n≥0

(2an + 1)xn = 2A(x) + (1 + x + x2 + . . . )

= 2A(x) + 1

1 − x
.

Then

A(x)
x

= 2A(x) + 1

1 − x
A(x) = x

(1 − x)(2 − x)

= x( 2

1 − 2x
− 1

1 − x
).

Thus,

an = [xn]A(x)

= [xn−1]( 2

1 − 2x
− 1

1 − x
)

= 2n − 1.

Example 15.2

Here’s a slightly harder 2 term recurrence: a0 = 1, an+1 = 2an + n. The sequence
starts 1, 2, 5, 12, 27, . . . so it’s really not obvious what the closed form for an should
be here (if there even is one!). Multiplying the recurrence by xn and summing over

all n for which it is valid, we get
A(x)−a0

x = A(x)−1
x on the left hand side. The right

side, meanwhile, becomes 2A(x) +∑n≥0 nxn.
So we need to compute ∑n≥0 nxn. We have:

∑
n≥0

nxn = ∑
n≥0

x
d

dx
xn

= x d

dx
∑
n≥0

xn

= x d

dx

1

1 − x
= x

(1 − x)2
.
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Thus

A(x) = 1 − 2x + 2x2

(1 − x)2(1 − 2x)

= A

1 − x2
+ B

1 − x
+ C

1 − 2x

for suitable constants A,B,C. Working this out, we end up with A = −1, C = 2, and
B = 0. Then we have

an = [xn]A(x)

= [xn]( −1

(1 − x)2
+ 2

(1 − 2x
)

= [xn]( −1

(1 − x)2
) + [xn]( 2

(1 − 2x
)

= −(n + 1) + 2n+1

= 2n+1 − n − 1.

§15.1.1 Fibonacci

Back to the Fibonacci numbers. We saw earlier that F (x) = 1
1−x−x2 . Using the quadratic

formula on the denominator, that comes out to

F (x) = 1

(1 − xr+)(1 − xr−)

for r± = 1±
√
5

2 . So

F (x) = 1

1 − x − x2

= 1

r+ − r−
( r+

1 − r+x
− r−

1 − r−x
)

= 1√
5
(∑
j≥0

rj+1+ xj −∑
j≥0

rj+1− xj)

=∑
j≥0

xj
1√
5
(rj+1+ − rj+1− ).

So we have a closed form expression for Fn, known as Binet’s formula, and since r+ > 1
and r− < 1, we get an excellent approximation

Fn ∼
1√
5
(1 +

√
5

2
)
n+1

.

In fact, Fn is always the closest integer to this value.

§16 Wednesday, September 28

§16.1 Set partitions
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Definition 16.1 — A set partition of {1, . . . , n} is a decomposition of the set into
non-empty, disjoint subsets (or blocks) whose union is {1, . . . , n}.

For instance, one set partition of {1, 2, 3} is {1, 3},{2}. Note that the order of the blocks
doesn’t matter here.

Definition 16.2 — We let {n
k
} denote the number of set partitions of {1, . . . , n}

into exactly k blocks. These are known as Stirling numbers of the second kind.

Proposition 16.3

{n
k
} = {n − 1

k − 1
} + k {n − 1

k
} .

Proof. Either i ∈ [n] is on its own or joins one of the k other blocks.

Note that, as an edge case, we have {n
k
} = 0 if k > n. Now define the Bell numbers

Bn = ∑k {
n
k
}, i.e., the number of partitions of an n-set. Fixing n, we can define a

generating function Bk(x) = ∑n {n
k
}xn. Then multiplying Proposition 16.3 by xn and

summing over all n, we have

Bk(x) = xBk−1(x) + kxBk(x)

for k ≥ 1, with B0(x) = 1. Then

Bk(x) =
1

1 − kx
Bk−1(x)

=∑
n

{n
k
}xn

= xk

(1 − x)(1 − 2x) . . .
And this can be chased to give us a precise formula:

{n
k
} =

k

∑
r=1

(−1)k−r rn−1

(r − 1)!(k − r)!
.

Now back to the Bell numbers. The sequence Bn starts with 1, 1, 2, 5, 15, 52, . . .. For any
M ≥ n, we have

Bn =
M

∑
k=1

{n
k
}

=
M

∑
k=1

k

∑
r=1

(−1)k−r rn−1

(r − 1)!(k − r)!

=
M

∑
r=1

rn−1

(r − 1)!

M

∑
k=r

(−1)k−r

(k − r)!

=
M

∑
r=1

rn−1

(r − 1)!

M−r
∑
s=0

(−1)s

s!
.

31



Math 532: Combinatorial Analysis Fall 2022

Fixing n and letting M →∞, we have

Bn =
1

e
∑
r≥1

rn−1

(r − 1)!
, n ≥ 1.

That’s pretty remarkable. Now let’s use this to derive an exponential generating function
for the Bell numbers. First define

B(x) = ∑
n≥0

b(n)xn

n!
.

Multiplying both sides of our formula for Bn by xn and summing over n ≥ 1, we get

B(x) − 1 = 1

e
∑
n≥1

xn

n!
∑
r≥1

rn−1

(r − 1)!

= 1

e
∑
r≥1

1

r!
∑
n≥1

(rx)n/n!

= 1

e
∑
r≥1

1

r!
(erx − 1)

= 1

e
(ee

x

− e)

= ee
x−1 − 1.

So B(x) = eex−1. That’s a really clean description for something so complicated! Now
let’s try to use this to derive a recurrence relation for the Bell numbers. We know that

∑n≥0
b(n)
n! x

n = eex−1. Now we use the “x d
dx log” trick, in which we:

1. Take the log of both sides,

2. Differentiate both sides and multiply by x,

3. Clear the equation of fractions,

4. Equate the coefficients of xn on both sides.

In order, this gives us:

log(∑
n≥0

b(n)
n!

xn) = ex − 1

∑n
nb(n)xn

n!

∑n
b(n)xn
n!

= xex

∑
n

nb(n)xn

n!
= xex∑

n

b(n)xn

n!

b(n) =∑
k

(n − 1

k
)b(k)

with the initial condition b(0) = 1.

Example 16.4

Evaluate fn =∑
k

(n + k
2k

)2n−k, n ≥ 0.
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Proof. Let F (x) = ∑n≥0 fnxn. Multiplying both sides of fn by xn and summing over
n ≥ 0, we have:

F (x) =∑
n

xn∑
k

(n + k
2k

)2n−k

=∑
k

2−k ∑
n≥0

(n + k
2k

)2nxn

=∑
k

2−k(2x)−k ∑
n≥0

(n + k
2k

)(2x)n+k

= ∑
k≥0

2−k(2x)−k (2x)2k

(1 − 2x)2k+1

In the last line, we made use of the identity ∑r≥0 (rk)x
r = xk

(1−x)k+1 . We’re not done yet,

though.

F (x) = 1

1 − 2x
∑
k≥0

( x

(1 − 2x)2
)
k

= 1

1 − 2x
⋅ 1

1 − x
(1−2x)2

= 1 − 2x

(1 − 4x)(1 − x)

= 2

3(1 − 4x)
+ 1

3(1 − x)

Taking coefficients of xn on both sides, we have that fn = (22n+k + 1)/3.

§17 Friday, September 30

§17.1 Generating functions III

One last example with generating functions. Suppose we want to show that two compli-
cated sums are in fact equal. Sometimes this can be achieved using generating functions,
even when we can’t evaluate either sum!

Example 17.1

Prove for any m,n ≥ 0 that

∑
k

(m
k
)(n + k

m
) =∑

k

(m
k
)(n
k
)2k.

Solution. Multiply the left hand side by xn and sum over all n ≥ 0, as well as interchanging
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the order of summation. We’re left:

∑
k

(m
k
)x−k ∑

n≥0
(n + k
m

)xn+k =∑
k

(m
k
)x−k xm

(1 − x)m+1

= xm

(1 − x)m+1 ∑k
(m
k
)x−k

= xm

(1 − x)m+1
(1 + 1

x
)m

= (1 + x)m

(1 − x)m+1
.

Doing the same to the right hand side of our original equation, we have:

∑
k

(m
k
)2k ∑

n≥0
(n
k
)xn = 1

1 − x∑k
(m
k
)( 2x

(1 − x)
)k

= 1

(1 − x)
(1 + 2x

1 − x
)m

= (1 + xm)
(1 − x)m+1

.

So we’re done.

§17.2 Exponential generating functions

So far we’ve looked mostly at ordinary generating functions, but exponential generat-
ing functions are really useful, too (sometimes even more so than ordinary generating
functions!).

In particular, given a function f ∶ N→ R, we’ll define εf(x) = ∑n≥0 f(n)xn/n!.

Proposition 17.2

Given functions f, g ∶ N→ R, define a new function h ∶ N→ R by the rule

h(∣X ∣) = ∑
(S,T )

f(∣S∣)g(∣T ∣)

where X is a finite set and (S,T ) ranges over all weak ordered partitions of X into
two blocks (i.e., S ⊔ T =X and S or T can be empty). Then

εh(x) = εf(x)εg(x).

Proof. Let ∣X ∣ = n. There are (n
k
) pairs (S,T ) with ∣S∣ = k, ∣T ∣ = n − k. Then

h(n) = ∑nk=0 (
n
k
)f(k)g(n − k). This proves the theorem.

Example 17.3

Given an n-set X, let h(n) be the number of ways of picking a weak ordered partition
of X into two blocks (S,T ), then giving S a total order, and choosing a subset of T .
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By the previous proposition, we have

∑
n≥0

h(n)xn

n!
= (∑

n≥0

n!xn

n!
)(∑

n≥0
2n
xn

n!
)

= e2x/(1 − x).

Furthermore, we can generalize our previous proposition!

Proposition 17.4

For k ≥ 1 and functions f1, . . . , fk ∶ N→ R, define h ∶ N→ R by

h(∣S∣) =∑ f1(∣T1∣) ⋅ . . . ⋅ fk(∣Tk∣)

where (T1, . . . , Tk) ranges over all weak ordered partitions of S into k blocks. Then

εh(x) =∏
i

εfix.

Remark 17.5. Throughout, we take N = {0,1, . . .}.

Theorem 17.6 (Compositional formula)

Given functions f ∶ Z>0 → R and g ∶ N → R with g(0) = 1, define a new function
H ∶ N→ R by h(0) = 1 and

h(∣S∣) =∑ f(∣B1∣)f(∣B2∣) . . . f(∣Bk∣)g(k), ∣S∣ > 0

where the Bi are unordered partitions of S. Then

εh = εg ○ εf .

And here εf = ∑n≥1 f(n)xn/n!, since f was only defined on Z>0.

Proof. Suppose ∣S∣ = n and let

hk(n) =∑ f(∣B1∣) . . . f(∣Bk∣)g(k)

where k is fixed. Since the Bi are non-empty, they’re distinct, so there are k! many ways
of linearly ordering them. So by the previous result,

εhk =
g(k)(εf(x))

k

k!
.

Now sum over all k ≥ 1 to arrive at the theorem.

Remark 17.7. Many structures of a set, such as a graph, can be regarded as disjoint unions
of their connected components. And some structure might be placed on the components
themselves (they might be linearly ordered, for example). If there are f(j) connected
structures on a j element set, and g(k) ways to place a structure on the k components, then
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h(n) is the total number of structures on an n element set.

§18 Monday, October 3

§18.1 Exponential formula

Last time we discussed composition of exponential generating functions. The most
common case from last time is the special case g(k) = 1 for all k. In combinatorial terms,
you can place a structure on “connected components” but no structure on the set of
components.

Corollary 18.1 (Exponential formula)

Given a function f ∶ Z>0 → R, define h ∶ N→ R by h(0) = 1 and

h(∣S∣) = ∑
{B1,...,Bk}

f(∣B1∣) . . . f(∣Bk∣),

where the sum ranges over all possible ways of breaking S into non-empty unordered
blocks. Then εh = eεf .

Once again, recall that we’re taking N to include 0.

Proposition 18.2

Under the conditions of the previous corollary, for all n ∈ N we get the following
recurrences:

h(n + 1) =
n

∑
k=0

(n
k
)h(k)f(n + 1 − k)

f(n + 1) = h(n + 1) −
n

∑
k=1

(n
k
)h(k)f(n + 1 − k).

Proof. We know that εh = eεf . Then, differentiating both sides and using the chain rule,
we have ε′h(x) = ε

′
f(x)εh(x). Take coefficients of xn/n! on both sides. This proves the

recursion.

This is proof by intimidation. - Professor Fulman

Corollary 18.3 (Composition formula, permutation version)

Given f ∶ Z>0 → R and g ∶ N→ R with g(0) = 1, define h by

h(n) = ∑
π∈Sn

f(∣c1∣) . . . f(∣ck∣)g(k)

where the ci are the cycles of π. Then

εh(x) = εg(∑
n≥1

f(n)xn/n).

36



Math 532: Combinatorial Analysis Fall 2022

Proof. There are (j − 1)! ways to circularly order a j-element set. So

h(∣S∣) = ∑
{B1,...,Bk}

((∣B1∣ − 1)!f(∣B1∣)) . . . ((∣Bk∣ − 1)!f(∣Bk∣))g(K).

Then, by our earlier result, we have

εh(x) = εg(∑
n≥1

(n1)!f(n)xn/n!)

= εg(∑
n≥1

f(n)xn/n).

Corollary 18.4 (Exponential formula, permutation version)

Let f ∶ Z>0 → R, and define h ∶ N→ R by h(0) = 1 and

h(n) = ∑
π∈Sn

f(∣c1∣) . . . f(∣ck∣)

where the ci are again the cycles of π. Then

εh(x) = e∑n≥1 f(n)x
n/n.

Proof. Set g(k) = 1 ∀k in the previous result. (This can also be proven using the cycle
index of Sn.)

§18.1.1 Applications

Example 18.5

What’s the number of simplea graphs on n vertices?

aThat is, no loops or parallel edges.

Solution. Easy: 2(
n
2
).

Example 18.6

What’s the number of connected graphs on n vertices?

Proof. Let c(n) be the number of connected graphs on n vertices. A graph on S is
obtained by splitting S into blocks, and on each block creating a connected graph. Thus

with h(n) = 2(
n
2
), f(n) = c(n), we compute

Eh(x) = ∑
n≥0

2(
n
2
)xn/n!

= eεf (x)

= e∑n≥1 c(n)x
n/n!.

Equivalently,

∑
n≥1

c(n)xn/n! = log(∑
n≥0

2(
n
2
)xn/n!).
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Remark 18.7. Suppose we want to study the number of graphs on n vertices with k
connected components. Let ck(n) denote this number. Define

F (x, t) = ∑
n≥0

∑
k≥0

ck(n)tkxn/n!

and apply the exponential formula with f(n) = c(n)t. Then h(n) = ∑k≥0 ck(n)tk. So

F (x, t) = εh(x)

= et∑n≥1 c(n)xn/n!

= et log(∑n≥0 2
(n
2
)
xn/n!

= (∑
n≥0

2(
n
2
)xn/n!)

t

.

When t = 1, we recover the previous example.

§19 Wednesday, October 5

§19.1 Exponential formula II

Example 19.1

Let Sn(2) be the number of n×n symmetric matrices with entries in N such that all
rows and columns sum to 2. Count Sn(2).

Proof. For such a matrix, let GA be the graph associated to A. That is, the number of
edges from node i to node j is Aij . From last time, a graph corresponds to such a matrix
A if and only if GA has connected components of precisely the following forms:

a) A single vertex with 2 loops,

b) A double edge between 2 vertices,

c) A cycle of length n ≥ 3,

d) A path of length ≥ 1 with a loop at each end.

Then, using the exponential formula, we have

∑
n≥0

Sn(2)xn/n! = exp(x + x2/2 + 1

2
∑
n≥3

(n − 1)!x
n

n!
+ 1

2
∑
n≥2

n!xn/n!)

= (1 − x)1/2 exp(x2/4 + x

2(1 − x)
)

Example 19.2

Suppose the matrix in the previous example has all entries 0 or 1. Let S∗n(2) be the
number of such matrices that can occur. Count them.
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Proof. Cases a) and b) from the previous proof can no longer occur, so we have

∑
n≥0

S∗n(2)xn/n! = e−x−x
2/2 ∑

n≥0
Sn(2)xn/n!

= (1 − x)−1/2 exp( − x − x2/4 + x

2(1 − x)
).

Example 19.3

Suppose that we allow our matrices A to have 2 as an entry, but require that
Tr(A) = 0. Count these.

Proof. The connected components of GA can’t have loops, so only b) and c) can occur.
Then, letting Tn(2) be the number of such matrices, we have

∑
n≥0

Tn(2)xn/n! = exp(x
2

2!
+ 1

2
∑
n≥3

(n − 1)!xn

n!
)

= (1 − x)−1/2 exp(−x
2
+ x

2

4
).

Now let Tn be the number of labeled undirected trees on n vertices. For instance,
T3 = 3. Then it turns out that there is a simple closed form for Tn.

Theorem 19.4

Tn = nn−2.

Proof. Let tn be the number of rooted trees on n vertices. Then clearly tn = n ⋅ Tn.
Now let fn be the number of rooted forests on n vertices (i.e., so that each connected
component is a rooted tree). Then note that Tn+1 = fn. In particular, giving a tree on
n + 1 vertices and removing its vertex gives a rooted forest.

Thus, tn+1 = (n + 1)Tn+1 = (n + 1)fn. Now let

T̂ (z) = ∑
n≥1

tnz
n/n!

and
F̂ (z) = ∑

n≥0
fnz

n/n!.

Then, invoking the exponential formula, we have F̂ (z) = eT̂ (z). [I got a bit distracted for
the rest of this proof :(]

§19.2 Lagrange inversion formula

Proposition 19.5 (Lagrange inversion formula)

Suppose F (z) = zG(f(z)), where G(0) ≠ 0. Then

[zn]F (z) = 1

n
[zn−1]G(z)n, ∀n ≥ 1.
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Remark 19.6. See the textbook for a proof of this fact. Also, it turns out that you can use
Lagrange inversion to prove that tn = nn−1.

Next time we’ll discuss applications of generating functions to probability!

§20 Friday, October 7

§20.1 Generating functions for probability

One useful application of generating functions for probability is to use them for the
computation of averages (i.e., means).

Example 20.1

What is the average number of cycles of σ drawn uniformly randomly from Sn?

Proof. Let c(n, k) be the number of π ∈ Sn with exactly k many cycles. Using the cycle
index theorem, we have that

1

n!
∑
k

c(n, k)xk = x(x1) . . . (x + n − 1)
n!

.

We can then differentiate with respect to x and set x = 1. We conclude that the expected
number of cycles is

1 + 1

2
+ . . . + 1

n
.

We can also use the previous formula to compute the variance of the number of cycles of
σ ∈ Sn and to prove a central limit theorem.

§20.1.1 Moment generating functions

Definition 20.2 — Let X be a random variable. The moment generating
function of X is

MX(t) ∶= E(etX).

Example 20.3

Let X be discrete, with P(X = −1) = 1/3, P(X = 4) = 1/6, and P(X = 9) = 1/2.

Proof. Plugging in the definition, we have

MX(t) =∑
k

etkP(X = k)

= 1

3
e−t + 1

6
e4t + 1

2
e9t.

Example 20.4
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Let X be continuous with density

f(x) =
⎧⎪⎪⎨⎪⎪⎩

ex

e−1 x ∈ (0,1);
0 else.

Compute MX(t).

Proof. We have

MX(t) = E(etX)

= ∫
∞

−∞
etxf(x)dx

= ∫
1

0
etxex/(e − 1)dx

= 1

e − 1
∫

1

0
e(t+1)xdx.

Then there are two cases. If t = −1, we have MX(t) = 1
e−1 . When t ≠ 1, we have:

MX(t) = 1

e − 1
⋅ e
(t+1)x

t + 1
∣
x=1

x=0

= et+1 − 1

(e − 1)(t + 1)
.

Example 20.5

Let X be a random variable distributed Poisson(λ). Compute MX(t).

Proof. Recall that P(X = k) = 1
eλ

λk

k! for k ∈ N. So we have:

MX(t) = ∑
k≥0

etkP(X = k)

= ∑
k≥0

1

eλ
⋅ (λe

t)k

k!

= 1

eλ
eλe

t

= eλ(e
t−1).

Example 20.6

Compute the moment generating function of a standard normal random variable.
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Proof. Let X ∼ N (0,1). Then

MX(t) = E(etX)

= 1√
2π
∫

∞

−∞
etxe−x

2/2dx

= 1√
2π
∫

∞

−∞
e−x

2/2+tx−1/2t2+1/2t2dx

= et
2/2( 1√

2π
∫

∞

−∞
e−1/2(x−t)

2

dx)

= et
2/2 ⋅ 1.

In the last line, we made use of the fact that the previous integral is simply the integral
of the density of a normally distributed random variable with mean t and variance 1.

Now that we’ve familiarized ourselves with some examples, we should justify the names
of these moment generating functions. As expected, one can recover the moments of X
from MX(t).

Proposition 20.7

Let MX(t) be the moment generating function of the random variable X. Then

M
(n)
X (0) = E(Xn).

Proof. We have

M(t) = E(etX)

M ′(t) = d

dt
E(etX)

= E( d

dt
etX)

= E(XetX).

So M ′(0) = E(X). And likewise for higher derivatives of M , as we’re differentiation with
respect to t.

§21 Monday, October 10

§21.1 Homework postmortem

Let’s briefly recap a tricky problem from the previous problem set, which involved
generating functions.

Problem 21.1. Let sc(n) be the number of self-conjugate partitions of n, e(n) be the
number of partitions of n with an even number of even parts, and o(n) the number of
partitions with an odd number of even parts. Prove e(n) − o(n) = sc(n).

Proof. Consider first the generating functions F and G of (e(n) − o(n)) and sc(n),
respectively. We have

F (x) = ∏
i odd

1

1 − xi
⋅ ∏
i even

1

1 + xi
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and
G = ∏

i odd

(1 + xi).

To see why, note that F can be written as

∏
i odd

(1 + xi + x2i + . . .) ⋅ ∏
i even

(1 − xi + x2i − . . .).

Then [xn]F (x) is precisely e(n)− o(n), as it counts partitions of n and a given partition
contributes positively to the sum if and only if it has an even number of even parts
(and negatively otherwise). The characterization of G follows immediately from the
observation that a self-conjugate partition is precisely a partition into distinct odd parts.

Then it suffices to show that F = G. Note first that

∏
i≥1

(1 + xi) =∏
i≥1

1 − x2i

1 − xi

=∏
i≥1

1

1 − x2i−1
.

The first equality is true term-wise and the second is a consequence of the fact that the
terms in the numerator all cancel with terms in the denominator. Invoking the previous
result – and taking reciprocals – we have

F = ∏
i odd

1

1 − xi
⋅ ∏
i even

1

1 + xi

=∏
i≥1

1

1 + (−x)i

=∏
i≥1

(1 − (−x)2i−1)

=∏
i≥1

(1 + x2i−1)

= ∏
i odd

(1 + xi)

= G.

§21.2 Generating functions for probability II

Recall that if X is a random variable, we write MX(t) = E(etX) for its moment generating
function (MGF). We saw last time that from the MGF one can indeed recover all moments
of X. Furthermore, it turns out that under mild conditions, the MGF of X determines
its distribution.

Proposition 21.2

If MX(t) = MY (t) for all t in some interval (−δ, δ) and are finite in this interval,
then X,Y have the same distribution.

Example 21.3
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Let MY (t) = e17(et−1); find the distribution of Y .

Solution. From last time, we know that e17(e
t−1) is the moment generating function of a

Poisson(17) random variable, so Y ∼ Poisson(17).

Now we’ll work on proving the central limit theorem, the single most important result
in elementary probability theory. First we’ll need some definitions.

Definition 21.4 — Discrete random variables X1, . . . ,Xn are independent if for
all x1, . . . , xn,

P(X1 = x1, . . . ,Xn = xn) =
n

∏
i=1

P(Xi = xi).

(And likewise for continuous random variables and their densities.)

Lemma 21.5

If X and Y are independent, then MX+Y (t) =MX(t) ⋅MY (t).

Proof. First note that if X and Y are independent, then for any functions h, g,

E(g(X)h(Y )) = E(g(X)) ⋅E(h(X)).

To see why, note that

E(g(X)h(Y )) = ∫
∞

−∞
∫

∞

−∞
g(x)h(y)f(x, y)dx dy

= ∫
∞

−∞
∫

∞

−∞
g(x)h(y)fX(x)fY (y)dx dy

= ∫
∞

−∞
g(x)fX(x)dx∫

∞

−∞
h(y)fY (y)dy

= E(g(X)) ⋅E(h(Y )).

Now we can solve our original problem. We have

MX+Y (t) = E(et(X+Y ))
= E(etXetY )
= E(etX)E(etY )
=MX(t)MY (t).

Theorem 21.6 (Central limit theorem)

Let X1,X2, . . . be i.i.d. random variables with finite means µ and variance σ. Let
Sn = ∑ni=1Xi. Then for any fixed a < b ∈ R, we have

lim
n→∞

P(Sn − nµ√
nσ

) = ∫
b

a

e−y
2/2

√
2π

dy.

Notably, this is the probability of a standard normal random variable landing in
(a, b).
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Proof. Assume MX(t) is finite for all t, and let Yn = Sn−nµ√
nσ

. It’s enough to show that

lim
n→∞

MYn(t) = et
2/2,

i.e., the MGF of a standard normal random variable.2 We have

MYn(t) = E(etYn)

= E(et(Sn−nµ)/σ
√
n)

= E(e
t

σ
√
n
∑nk=1(Xk−µ))

= E(
n

∏
k=1

e
t

σ
√
n
(Xk−µ))

=
n

∏
k=1

E(e
t

σ
√
n
(Xk−µ)).

Using Taylor approximations, we have that ez ≈ 1 + z + z2/2 for small z. Then,

E(e
t

σ
√
n
(Xk−µ)) ≈ E(1 + t

σ
√
n
(Xk − µ) +

t2

2σ2n
(Xk − µ)2)

= 1 + t

σ
√
n
E(Xk − µ) +

t2

2σ2n
E(Xk − µ)2

= 1 + 0 + t2

2σ2n
σ2

= 1 + t2

2n
.

So MYn(t) ≈ (1 + t2

2n)
n, which indeed tends to et

2/2 as n→∞.

§22 Wednesday, October 12

Previously we’ve spoken about what it means for a sequence to be unimodal (i.e., it
increases until it decreases for the rest of the sequence). An even stronger property is
that of log concavity.

Definition 22.1 — Recall that a function f ∶ R → R is concave if f(x+y2 ) ≥
f(x)+f(y)

2 ∀x, y ∈ R. Similarly, a sequence c0, . . . , cn ∈ R>0 is log concave if log(c) is
a concave function. That is,

log ci−1 + log ci+1
2

≤ log ci.

If the inequality is always strict, then we call the sequence strictly log concave.

Proposition 22.2

Log concavity implies unimodality.

Proof. If a sequence isn’t unimodal, then it has 3 consecutive entries with cr−1 > cr < cr+1.
And then cr

cr−1
< 1 < cr+1

cr
, so the sequence isn’t log-concave.

2It looks like we’re making use of continuity of MGF’s here.
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Theorem 22.3

Let p(x) = c0 + c1x + . . . + cnxn. Suppose all the zeroes of p(x) are real and negative.
Then the sequence c0, . . . , cn is strictly log concave.

The proof of this theorem is somewhat involved, so we won’t get into it now, but let’s
look at some applications.

Corollary 22.4

The binomial coefficient sequence (n
0
), (n1), . . . , (

n
n
) is strictly log concave, and thus

unimodal.

Proof. Invoke the previous theorem with p(x) = 1+(n
1
)x+ . . .+(n

n
)xn. That’s just (x+1)n,

so it has a single negative root, and the theorem applies.

Corollary 22.5

The sequence of Stirling numbers of the first kind

c(n,1), c(n,2) . . . , c(n,n)

is strictly log concave and thus unimodal.

Proof. We’ve proven previously that

n

∑
j=1

c(n, j)xj−1 = (x + 1)(x + 2) . . . (x + n − 1).

All the roots are negative, so we’re done.

§22.1 Polya theory of counting

Now we’re moving on to a new topic entirely – that of the Polya theory of counting. This
is a beautiful application of algebra to combinatorics, and the basic setup is that we want
to count objects with respect to an equivalence relation. Often the equivalence relation
arises from a permutation group acting on a set. The essence of Polya theory is to count
these equivalence classes by studying the orbits of a group action.

We’ll present a few questions that Polya theory can answer – without solutions for now
– and then start building the theory.

Example 22.6

How many “essentially different” necklaces can be made with n beads of two colors?
We regard 2 necklaces as equivalent if they differ by an element of D2n.

Example 22.7

What is the number of non-isomorphic simple graphs on n vertices?
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Example 22.8

How many different ways can you color the face of a cube with n colors, where 2
colors are considered the same if one can be rotated into the other?

So here’s the general set-up: let A,B be finite sets and G be a group of permutations
(i.e., set automorphisms) of A. Call the elements of B colors. Let BA, or Hom(A,B),
denote the collection of functions A→ B and call these maps colorings. Given a coloring
f ∶ A → B and a permutation σ ∈ G, we define a new coloring σ(f) by x ↦ f(σ−1(x)).
Note that for all σ, τ ∈ G and f ∈ Hom(A,B), we have σ(τ(f)) = (στ)(f). So G indeed
acts on the set of colorings.

In the necklace problem, we have this setup with A the vertex set of an n-gon, B = {0, 1},
and G =D2n. Now we want the total number of equivalence classes – or orbits – of our
G action on Hom(A,B).

§23 Monday, October 17

§23.1 Polya theory II

More on Polya theory, one of the great applications of algebra to combinatorics. Recall
the setup: we have a finite set A, finite group G acting on A, and a set B of colors. Then
the colorings are precisely the elements of Hom(A,B), and G acts on these colorings via
σ ↦ (f ↦ f ○ σ−1). Now our goal is just count the number of orbits of this G action on
Hom(A,B).

Remark 23.1. We’re obligated to use σ−1 above because we want a left G-action but σ is
coming in on the right-hand side of f .

Now let’s say A equals the vertices of a hexagon, B = {white, black}, and G = D6.
Then, by Burnside’s lemma (or the orbit counting theorem) we have that the number of
orbits of a G-action is just

1

∣G
⋅ ∑
σ∈G

fix(σ).

Theorem 23.2

Let A,B be finite sets and let G act on A. Let ck(G) be the number of elements of
G with exactly k cycles in their decomposition on A. Then the number of orbits of
G on the colorings of A is equal to

1

∣G∣ ∑k≥1
ck(G) ⋅ ∣B∣k.

Proof. By Burnside’s lemma, the number of orbits is given by

1

∣G∣ ∑σ∈G
fix(σ).

By the definition of σ(f), we have that σ fixes f if and only if f is constant on every
cycle of σ. So the number of colorings fixed by σ is equal to ∣B∣k, where k is the number
of cycles of σ, since you have ∣B∣ choices for each cycle of σ.
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Then

∑
σ∈G

fix(σ) = ∑
k≥1

ck(G)∣B∣k,

and the result follows.

§24 Wednesday, October 19

§24.1 Polya theory III

Let’s keep things going with Polya theory.
Let V be a set of vertices, and let E consist of all 2-elements of V , so ∣E∣ = (n

2
). Note

that a simple graph on n vertices can be viewed as a Boolean function E → {0,1}. Now
we want to count the number of simple graphs on n vertices, up to isomorphism.

Let Sn be the usual permutation group and S
(2)
n be the induced group – isomorphic to

Sn – of permutation on the set E. Namely, pointwise applications on the 2-element sets

in E. Thus S
(2)
n acts on maps E → {0,1}. And two maps f, g correspond to isomorphic

graphs if and only if they are in the same orbit of S
(2)
n . So we need to compute the

cycle index of S
(2)
n on E. With some manual work, we can see that the number of

non-isomorphic graphs for n = 5 is 34.
Now let’s think about a setup in which we look at a weighted count of orbits. Fix a

weighting w ∶ B → R. Then for any coloring f ∶ A → B, define w(f) = ∏aw(f(a)). So
two colorings in the same orbit of G have the same weight. Now the goal is to calculate

∑orbitsw(orbit).

Theorem 24.1

∑orbitsw(orbit) = ZG(∑b∈B w(b),∑b∈B w(b)2, . . . ,∑b∈B w(b)n).

Here ZG is the cycle index of G acting on A; the proof is a bit involved, so we won’t
get into it now, but it’s covered in the textbook.

§24.2 Random matrices over Fp
We’ve studied cycles of Sn, and found that two permutations are conjugate if and only
if they have the same cycle types. We also used a “cycle index” to study properties of
permutations depending only on cycles.

Let’s do something similar for GLn(Fq). Now, two elements of GLn(Fq) are conjugate
if and only if they have the same “rational canonical form.”

§25 Friday, October 21

§25.1 Random matrices over Fp II

Consider the group GLn(Fq); we mentioned last time that conjugacy classes correspond
to “rational canonical forms.” What precisely do we mean by this? To each monic,
irreducible polynomial φ over Fq, we associate a partition λφ. This data represents a
rational canonical form if:

1. ∣λz ∣ = 0,

2. ∑φ monic irred. ∣λφ∣deg(φ) = n.
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Example 25.1 1. The characteristic polynomial of g is ∏φ φ
∣λφ(g)∣. For example,

if g is the identity, we get (z − 1)n.

2. The minimal polynomial of g is ∏φ φ
largest part of λφ .

Thus,

a) g is “regular semisimple” ⇐⇒ ∣λφ∣ ≤ 1 ∀φ,

b) g is “cyclic” ⇐⇒ all λφ have at most 1 part, and

c) g is “semisimple” ⇐⇒ all parts of all λφ are at most 1.

Furthermore, it turns out that there is a nice product formula expressing the number
of g ∈ GLn(Fq) with a given rational canonical form. Using this formula, you get a “cycle
index” and you can write down generating functions.

Now let rs(n, q) be the proportion of regular semisimple elements of GL(n, q), c(n, q)
be the proportion of cyclic elements, and ss(n, q) the proportion of semisimple elements.
We also let N(d,Q) be the number of monic, irreducible degree d polynomials over Fq
with nonzero constant term. Then,

N(d, q) =
⎧⎪⎪⎨⎪⎪⎩

q − 1 d = 1;
1
d ∑r∣d µ(r)q

d/r d > 1.

Furthermore,

1 +∑
n≥1

unrs(n, q) =∏
d≥1

(1 + ud

qd − 1
)N(d,q)

1 +∑
n≥1

unc(n, q) =∏
d≥1

(1 +∑ j ≥ 1
ujd

q(j−1)d(qd − 1)
)

1 +∑
n≥1

unss(n, q) =∏
d≥1

(1 +∑
j≥1

ujd

qdj2(1 − 1/qd) . . . (1 − 1/qdj)
)

Theorem 25.2

Fix q. Then limn→∞ rs(n, q) = 1 − 1
q .

Theorem 25.3

Fix q. Then limn→∞ c(n, q) = 1−1/q5
1+1/q3 .

§26 Monday, October 24

Recall that two elements x, y in a group G are said to be conjugate if there is a z ∈ G
with x = z−1yz. In this case, we have informally that x and y “play the same role” in G.

Here are some useful facts, some of which we’ve seen before.

1. Two elements x, y ∈ Sn are conjugate if and only if they have the same cycle type.
And much is known about cycles of permutations on random symbols. For instance:
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a. P(σ ∈ Sn has j fixed points) = 1
e
1
j! +O(2n/n!).

b. The average length of the longest cycle of σinSn is asymptotically c ⋅ n, for
c ≈ 0.624.

2. As we mentioned last time, two elements of GLn(Fq) are conjugate if and only if
they have the same rational canonical form.

3. Let Un be the collection of n × n complex unitary matrices. Then A,B ∈ Un are
conjugate if and only if they have the same set of eigenvalues.

§27 Wednesday, October 26

§27.1 Random matrix theory for compact Lie groups

Let’s consider Un, the collection of all matrices M such that MM∗ = I, where M∗ is the
conjugate transpose of M . We’ve seen previously that if λ is an eigenvalue of a unitary
matrix, then ∣λ∣ = 1.

A useful fact is that the joint probability density for the eigenvalues eiθ1 , . . . , eiθn of a
matrix M ∈ Un drawn from the Haar measure is

1

(2π)nn!
∏

i≤j<k≤n
∣eiθj − eiθk ∣2.

So the eigenvalues “repel” each other. Now here’s a collection of useful facts about these
eigenvalues.

1. For n > 1, the sum of n equally spaced points on the unit circle is 0.

2. The sum of n i.i.d. points uniform on S1 is of order
√
n. This follows from the

central limit theorem.

3. Traces of random unitary matrices (drawn from the Haar measure) are amazingly
close to Gaussian.

4.

Theorem 27.1

Let M be drawn from the Haar measure on Un, and fix j ∈ N. Then as n→∞,

P(Tr(M j) ∈ B)→ P(
√
jZ ∈ B),

where Z is a standard complex normal.

Theorem 27.2

Let M be drawn from the Haar measure on Un. Then for any n and j ≥ n,
the eigenvalues of M j have exactly the same distribution as n independent
uniforms on S1.

§27.2 Error-correcting codes

50



Math 532: Combinatorial Analysis Fall 2022

Definition 27.3 — An [n, k, d] binary code consists of 2k vectors in Fn2 called
codewords such that

1. The codewords are closed under addition, and

2. Any 2 codewords differ in at least d places.

We say that n is the length of the code, k is the dimension of the code, and d is the
minimum distance of the code.

So for a good code, we want n to be small (to allow for rapid transmission), k to be
large (for an efficient code), and d to be large (to correct many errors). However, these
goals are incompatible, which makes this an interesting task.

§28 Friday, October 28

§28.1 Error-correcting codes II

Recall our definitions from last time.

Definition 28.1 — An [n, k, d] binary code consists of 2k vectors in Fn2 called
codewords such that

1. The codewords are closed under additiona, and

2. Any 2 codewords differ in at least d places.

We say that n is the length of the code, k is the dimension of the code, and d is the
minimum distance of the code.
aThus, the codewords form a vector space

So an [n, k, d] binary code allows one to correct ⌊d−12 ⌉ many errors in a given message.

Example 28.2

C = {00000,11111} is a [5, 1, 5] code.

Note that a t-error correcting code with M many codewords must satisfy

M(1 + (n
1
) + (n

2
) + . . . + (n

t
)) ≤ 2,

since spheres of radius t around each codeword must be disjoint. And a code is called
perfect if this is an equality.

Definition 28.3 — The dual code C� of an error-correcting code consists of all
vectors which have 0 dot product (mod 2) with every codeword of C.

Example 28.4

C = {00,11} is its own dual. And the dual of C = {000,011,101,110} is {000,111}.
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§28.1.1 Weight enumerators

We define the weight of a binary vector to its number of nonzero entries. So weight(10100) =
2, for instance. And of course, if u and v are codewords, then their distance is simply
weight(u − v) = weight(u + v).

Definition 28.5 — If a binary code C contains Ai many codewords of weight i, we
define the weight enumerator of C by

WC(x, y) =
n

∑
i=0
Aix

n−iyi.

Equivalently,

WC(x, y) =
n

∑
u∈C

xn−weight(u)yweight(u).

Example 28.6 1. C = {00,11} has weight enumerator WC = x2 + y2.

2. C = {000,111} has WC = x3 + y3.

3. C = {000,011,101,110} has WC = x3 + 3xy2.

Theorem 28.7

Let C be an [n, k, d] binary code, and C� be its dual. Then

WC�(x, y) = 1

2k
WC(x + y, x − y).

§29 Monday, October 31

§29.1 Error-correcting codes III

From last time, let C be a self-dual code where all codewords have weight a multiple of
4. Let W (x, y) be the weight enumerator of C. Then we have:

1. W (x+y√
2
, x−y√

2
) =W (x, y).

2. W (x, iy) = W (x, y). Note that this holds because all codewords have weight a
multiple of 4, and i4 = 1.

So 1) says that W (x, y) is invariant under the map T1 ∶ (
x

y
)↦ 1√

2
(1 1

1 −1
)(x
y
). Also, 2)

shows that W (x, y) is invariant under the map T2 ∶ (
x

y
)→ (1 0

0 i
)(x
y
). So W is invariant

under the group generated by T1, T2. And the size of the group generated by these
matrices is 192.

So how many such invariants are there? Let ad be the dimension of space of invariants
of degree d, and let φ(λ) = a0 + a1λ + a2λ2 + . . ..
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Theorem 29.1

For any finite group G of complex m ×m matrices.

φ(λ) = 1

∣G∣ ∑A∈G
1

det(A − λI)
.

So for our group of size 192, we can compute the right hand side:

Φ(λ) = 1

192
( 1

(1 − λ)2
+ 1

1 − λ2
+ 1

(1 − λ)2
+ . . . )

= 1

(1 − λ8)(1 − λ24)
.

Corollary 29.2

ad = 0 unless d is a multiple of 8.

§29.1.1 Hadamard matrices

Definition 29.3 — A Hadamard matrix of order n is an n×n matrix H of +1’s
and -1’s such that H ⋅HT = nI.

Remark 29.4. Multiplying any row or column of H by -1 gives another Hadamard matrix.
So you can always make the first row and column of H consist entirely of +1’s using a
sequence of transformations. Such an H is called normalized.

Proposition 29.5

If H is an n × n Hadamard matrix, then n is 1, 2, or a multiple of 4.

Proof. We can assume that H is normalized and that n ≥ 3. Then rows 2 and 3 each
have n/2 1’s and n/2 -1’s. So n is even. Furthermore, rows 2 and 3 are orthogonal with
respect to each other. So if rows 2 and 3 both have 1s in k many columns, then in n/2−k
many columns, row 2 has 1 and row 3 has -1. Can chase this to see that 2k = n/2 and n
is a multiple of 4.

§30 Wednesday, November 2

§30.1 Hadamard matrices II

Recall that a Hadamard matrix is an n×n matrix with entries in ±1 satisfying HHT = nI.
We saw last time that the previous conditions demand that n ∈ {1,2} ∪ 4Z.

We’ll keep talking about Hadamard matrices today, and use number theory to construct
a Hadamard matrix. Let p > 2 be prime, and define χ(i) = 0 if i is a multiple of p, 1 if i
is a quadratic residue mod p, and -1 otherwise.
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Proposition 30.1

For any c ≠ 0 mod p,
p−1
∑
b=0

χ(b)χ(b + c) = −1.

Proof. We saw last time that χ commutes with multiplication. Now note that the term
when b = 0 contributes 0 to the sum under consideration. When b ≠ 0, let z = b+c

b mod p.
As b ranges over 1,2, . . . , p − 1, z ranges over 0,2, . . . , p − 1 (i.e., skipping z = 1).

Then
p−1
∑
b=0

χ(b)χ(b + c) =
p−1
∑
b=1

χ(b)χ(bz)

=
p−1
∑
b=1

χ(b)2χ(z)

=
p−1
∑
b=1

χ(b)2χ(z)

=
p−1
∑

z=0,z≠1
χ(z)

= 0 − χ(1) = −1.

Now define a matrix Q as follows: select p prime with p = −1 mod 4, and set Q to
be the p × p matrix with qij = χ(j − i). Then Q is skew-symmetric, i.e. QT = −Q, since
χ(j − i) = χ(−1)χ(i − j) = −1 ⋅ χ(i − j).

Lemma 30.2

Letting I denote the identity matrix and J the matrix of all 1’s, we have:

1. QQT = pI − J ,

2. QJ = JQ = 0.

Proof. Let P = QQT . Then pii = ∑p−1k=0 q
2
ik = p − 1. For i ≠ j, we have

pij =
p−1
∑
k=0

qikqjk

=
p−1
∑
k=0

χ(k − i)χ(k − j)

=
p−1
∑
b=0

χ(b)χ(b + c)

= −1.

Note that the last line holds by our previous proposition. So we’ve proven part 1. Part 2
follows from similar manipulations.

Now we can create a (p + 1) × (p + 1) matrix H whose lower-right p × p submatrix is
Q−I and whose entries are 1 elsewhere. And it can be verified manually that H is indeed
Hadamard. That’s all for Hadamard matrices and error-correcting codes!
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§30.2 Pigeonhole principle

We’re all familiar with the pigeonhole principle: placing n items in < n boxes requires a
collision of items. It’s awful simple, but it can have some surprisingly neat applications.

Example 30.3

Consider the numbers {1,2, . . . ,2n}, and select any n + 1 of them. Then there are
two chosen numbers which are relatively prime.

Proof. Since you’ve chosen n+ 1 many numbers, two of them must be consecutive, owing
to the pigeonhole principle. (Let your n bins be {2i,2i − 1} for i ∈ [n].) And these
numbers are relatively prime.

Theorem 30.4

Let A be a collection of n + 1 numbers from the set {1,2, . . . ,2n}. Then there are
two elements in A such that one divides the other.

Proof. Write every a ∈ A as a = 2km for m odd. There are n + 1 numbers in A but only
n possible odd parts. So, by the pigeonhole principle, there are 2 elements x, y of A with
the same odd part. And one divides the other.

§31 Friday, November 4

§31.1 Double counting

We’re starting a new topic today: it’s a fairly simple trick, but also one that can be quite
useful under the right circumstances. The basic setup is that you have finite sets R and
C, along with a subset S ⊆ R×C. When (p, q) ∈ S, we say that p and q are incident. For
p ∈ R, we set rp to be the number of element of C incident to p. For q ∈ C, we set cq to
be the number of elements of R incident to q.

Lemma 31.1

∑p∈R rp = ∣S∣ = ∑q∈C cq.

Proof. Immediate.

This is pretty obvious, but there are some neat examples.

Example 31.2

For j > 0, let t(j) equal the number of divisors of j. Let’s study how t(j) behaves
“on average.”

Solution. Define F (n) = 1
n ∑

n
i=1 t(i). Things look pretty hopeless, since t(j) behaves

wildly. For instance, t(p) = 2 for prime p whereas t(2k) = k + 1. Let’s try to study this
using double counting. Consider the n × n matrix A with aij = 1 if i ∣ j. How many 1’s
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are in A? Counting by columns gives us ∑nj=1 t(j). Counting by rows, however, gives us

∑nj=1⌊n/j⌋, as there are ⌊n/j⌋ multiples of j in [n]. So we have:

F (n) = 1

n

n

∑
j=1

t(j)

= 1

n

n

∑
i=1

⌊n/i⌋

≤ 1

n

n

∑
j=1

n/i

=
n

∑
i=1

1/i

≈ log(n).

So F (n) is always within 2 of log(n).

§32 Monday, November 7

§32.1 Combinatorics for topology

Today we’ll be using purely combinatorial techniques to prove Brouwer’s fixed point
theorem from topology, which is pretty remarkable. To get things started, recall the
statement of the theorem.

Theorem 32.1 (Brouwer’s fixed point)

Any continuous map Bn → Bn has a fixed point, where Bn = {x ∈ Rn ∶ ∣x∣ ≤ 1}.

§32.1.1 Sperner’s lemma

Fix a “big” triangle with vertices V1, V2, V3. We proceed to triangulate it and to fur-
thermore label each vertex of the triangulation by 1, 2, or 3, according to the following
rules:

1. Vertex Vi gets color i, and

2. On the edge between vertex Vi and Vj , we can only use labels i or j.

Then the punchline is that there must be a small triangle here with vertices labeled 1, 2,
3.

Proof. We show that the number of 1,2,3 triangles is odd. Place one dot inside each
triangle and one dot outside of the outtermost triangle. Now draw an edge in this “dual
graph” whenever you cross a 1,2 edge of a triangle.

Now observe that the following claims hold in this dual graph:

1. An interior vertex has degree 1 ⇐⇒ it corresponds to a 123 triangle.

2. An interior vertex has degree 2 ⇐⇒ its triangle only has labels 1, 2.

3. An interior vertex has degree 0 ⇐⇒ its triangle doesn’t have both a 1 and 2.

4. The exterior vertex has odd degree.
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And in any graph, the sum of degrees of vertices is even, so any graph has an even
number of vertices of odd degree. Thus we have an odd number of 123 triangles, proving
the lemma.

Now we can get to the proof of Brouwer’s fixed point theorem for n = 2.

Proof of Theorem 32.1, n = 2. Consider the 2-simplex in R2, i.e., the convex hull of
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1). Since this is homeomorphic to B2, it suffices
to show that the fixed-point property holds for our simplex. For a triangulation T of the
simplex, let δ(T ) denote the maximal length of an edge in T .

Now construct a sequence of triangulations {Ti}i∈N such that δ(Tk)→ 0. Now for each
triangulation, label its vertices 1, 2, 3 by the following rule: λ(v) equals the smallest
index i so that the ith coordinate of f(v) − v is negative.

If f has no fixed point, then this is well-defined, as f(v)−v has coordinates summing to 0.
As an exercise, one can check that this labeling satisfies the hypotheses of Sperner’s lemma.
So in each triangulation Tk, there is a 1,2,3 triangle {vk∶1, vk∶2, vk∶3} with λ(vk∶i) = i. The
sequence of points vk∶1 might not converge, but we can replace it with a convergent
subsequence owing to sequential compactness of our simplex.

So, replacing it with one of its subsequences if need be, we can assume that {vk∶1}k∈N
converges to a point v. The distance of vk∶2 and vk∶3 from vk∶1 is at most δ(Tk). Thus
{vk∶2} and {vk∶3} both converge to the same point v.

Now note that, by construction, the first coordinate of f(vk∶1) is smaller than the first
coordinate of vk∶1 for all k. Then by continuity, the first coordinate of f(v) is ≤ the first
coordinate of v. And likewise for the second and third coordinates. Then v is a fixed
point of f — as the coordinates of v and f(v) sum to 1 — producing contradiction.

§33 Wednesday, November 9

§33.1 Lattice paths and determinants

Let M = (mij) be an n × n real matrix, and recall that

det(M) = ∑
σ∈Sn

sign(σ)m1σ(1) ⋅ . . . ⋅mnσ(n).

Let’s now revisit this idea. Consider the directed graph G with vertices A1, . . . ,An
corresponding to the rows of M and vertices B1, . . . ,Bn corresponding to the columns of
M . For each pair i, j we have an edge e = (Ai,Bj) with weight wij .

Then det(M) is the determinant of the path matrix A for G whose i, j entry is the total
weight of the shortest path i→ j. On the other hand, ∑σ∈Sn sign(σ)m1σ(1) ⋅ . . . ⋅mnσ(n)
is the weighted (signed) sum over all vertex disjoint path systems from {A1, . . . ,An}
to {B1, . . . ,Bn}. Such a path system Pσ is given by paths A1 → Bσ(1), . . . ,An → Bσ(n).
And here the weight of the path system is the product of its paths’ weights.

Gessel and Viennot then gave an extension of this idea to more general graphs.
Let G be a finite acyclic graphic with weighted edges, and let A = {A1, . . . ,An} and
B = {B1, . . . ,Bn} be two sets of n vertices. We define a path matrix M = (mij) by
mij = ∑p∶Ai→Bj w(P ). Namely, mij equals the sum of weights for all paths from Ai to
Bj . As the graph is acyclic, this is a finite sum.

Now a path system P from A to B consists of a permutation σ ∈ Sn together with n
paths pi ∶ Ai → Bσ(i). The weight of P is the product of all its paths’ weights. Call the
path system vertex-disjoint if its paths are all pairwise disjoint.
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Lemma 33.1

Let G be a finite acyclic weighted directed graph. Let A = {A1, . . . ,An}, B =
{B1, . . . ,Bn} be sets of n vertices, and let M be the path matrix from A to B. Then

det(M) =∑
P

sign(P)w(P)

where the sum is over all vertex disjoint path systems from A to B.

§34 Monday, November 14

§34.1 Gessel-Viennot lemma

Recall our lemma from last time:

Lemma 34.1

Let G be a finite acyclic weighted directed graph. Let A = {A1, . . . ,An}, B =
{B1, . . . ,Bn} be sets of n vertices, and let M be the path matrix from A to B. Then

det(M) =∑
P

sign(P)w(P)

where the sum is over all vertex disjoint path systems from A to B.

Note that here we’re defining w(P) to be the product of weights over edges in P.

Proof of Lemma 34.1. A typical summand of det(M) is sign(σ)m1σ(1) ⋅ . . . ⋅mnσ(n). And
that’s the same thing as

sign(σ)( ∑
P1∶A1→Bσ(1)

w(P1)) × . . . × ( ∑
Pn∶An→Bσ(n)

w(Pn)).

So, summing over all σ, we get that

det(M) =∑
P

sign(P )w(P )

where here the sum is over all path systems from A to B. Then it remains to show that
this sum over non-vertex disjoint path systems comes out to 0. It’s a bit involved, but it
can indeed be done.

Example 34.2 (Cauchy-Binet)

Let P be an r × s matrix and Q an s × r matrix, with r ≤ s. Then

det(PQ) =∑
Z

detPZ ⋅ detQZ ,

where PZ is the r×r submatrix of P with column set Z and QZ is the r×r submatrix
of Q with row set Z.
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§35 Wednesday, November 16

New topic today!

§35.1 Symmetric function theory

Definition 35.1 — A symmetric function f in the variables X1, . . . ,XN is a
function such that for every σ ∈ Sn, f(X1, . . . ,Xn) = f(Xσ(1), . . . ,Xσ(n)).

So symmetric functions are precisely those that don’t distinguish between their inputs.
They’re really defined on multi-sets of length n, rather than n-tuples.

Example 35.2

x1 + . . . + xn is a symmetric function. Likewise, ∑i<j x2ixj +∑i<j xix2j is symmetric.

Definition 35.3 — A symmetric function f is homogeneous of degree n if all its
terms have degree n. We’ll use Λn to denote the set of all homogeneous symmetric
functions of degree n, and set Λ =⊕n≥0 Λn.

An important goal for today will be to give several bases for Λ.

§35.1.1 Monomial symmetric functions

Definition 35.4 — Given λ = λ1λ2 . . . λ≤n a partition of n, we define mλ ∈ Λn as

mλ =∑
α

xα,

where the sum ranges over all distinct permutations α ∈ Sn of the entries of λ (where
λ is possibly padded with zeroes to attain length n).

For instance, m∅ = 1, m1 = ∑i xi, mk = ∑i xk, m2,1 = ∑i<j x2ixj +∑i<j xix2j .

Proposition 35.5

The mλ, for λ ranging over partitions of n, form a basis of Λn. So dim(Λn) equals
the number of partitions of n.

§35.1.2 Elementary symmetric functions

Definition 35.6 — For a positive integer n, define the nth elementary symmetric
function as

en = ∑
i1<i2<...<in

xi1xi2 . . . xin .

Remark 35.7. The coefficients of a polynomial are elementary symmetric functions of its
roots.
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§36 Friday, November 18

§36.1 Symmetric function theory II

We were talking about symmetric functions last time, mentioning monomial symmetric
functions and elementary symmetric functions. Notably, they both form bases for Λ, the
space of homogeneous symmetric functions. We’ll introduce a third basis today: the
complete symmetric functions.

§36.1.1 Complete symmetric functions

Definition 36.1 — For n ≥ 1, define the nth complete symmetric function as

hn = ∑
λ∈Par(n)

mλ = ∑
i1≤i2≤...≤in

xi1xi2 . . . xin .

For n = 0, simply define h0 = 1.

We can also define for λ = λ1λ2 . . . ∈ Par(n), hλ = hλ1hλ2 . . ..

Proposition 36.2

Let λ,µ be partitions of n. Define Nλ,µ by mλ = ∑µ∈Par(n)Nλµmµ. Then Nλ,µ is the
number of matrices A whose entries are non-negative integers with row(A) = λ and
col(A) = µ.

It turns out that Nλ,µ can also be interpreted as follows. Say we have n balls with λi
of them labeled i. We also have boxes 1,2, ... Then Nλ,µ is equal to the number of ways
of placing balls in boxes so that box i has exactly µi balls.

So we have several bases for the space of symmetric functions Λ now: mλ, eλ, hλ, pλ,
for λ ranging through the partitions of n ∈ N.

Proposition 36.3 1. hn = ∑λ∈Par(n) 1
zλ
pλ.

2. en = ∑λ∈Par(n) eλ 1
zλ
pλ = (−1)number of parts of λ.

Proof.

1. Substitute y = (t,0,0, . . . ,0) in 1
∏i,j(1−xiyj)

= ∑λ 1
zλ
plambda. The left side then

becomes ∏j
1

1−xit = ∑n≥0 hn(x1, x2, . . .)t
n. And this checks with the right hand side.

2. We can use a similar argument with the identity

∏
i,j

(1 + xiyj) =∑
λ

eλ
zλ
pλ(x)pλ(y).
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§37 Monday, November 28

§37.1 Schur functions

Schur functions form another basis for Λ, the space of symettric functions. To define these,
we’ll need the notion of a semistandard Young tableau (SSYT) of shape λ ∈ Par(n).
This is an array of posiitve integers of shape λ which is weakly increasing as you go along
a given row and strictly increasing as you go down a column.

An example of an SSYT for λ = 6,5,3,3 is

111344

24455

557

699

Furthermore, we say that an SSYT T has type α = (α1, α2, . . .), where T has αi many
copies of the number i. For an SSYT T of type α, we’ll write

xT = xα1(T )
1 x

α2(T )
2 . . .

So xT keeps track of value counts in T . We can extend this definition to skew shapes.

Definition 37.1 — Let λ be a partition and µ a partition contained in λ, i.e., µ ≤ λ
entry-wise. Then an SSYT of shape λ/µ is an array of skew shape λ/µ whose
entries are weakly increasing along rows and strictly increasing down columns.

For instance, here’s an SSYT of shape (6,5,3,3)/(3,1). We’re keeping the entries in
our “denominator” tableau blank.

344

1477

226

388

Definition 37.2 — Let λ/µ be a skew shape. Define the skew Schur function
sλ/µ in the variables x1, x2, . . . by

sλ/µ =∑
T

xT ,

where the sum ranges over all SSYT of shape λ/µ.

It’s not even really obvious from our definitions that sλ/µ will be symmetric. So let’s
prove it.

Proposition 37.3

For nay skew shape λ/µ, sλ/µ is indeed symmetric.
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Proof. We show that sλ/µ is invariant under swapping xi with xi+1. Suppose that
∣λ/µ∣ = ∣λ∣− ∣µ∣ = n, and let α = α1, α2, . . . be a weak composition of n. Let α̃ equal α with
its ith and (i + 1)th entries swapped.

Now let Tλ/µ,α consist of those SSYTs of shape λ/µ and type α. Likewise for Tλ/µ,α̃.
We now seek a bijection φ ∶ Tλ/µ,α → Tλ/µ,α̃. Fix a T ∈ Tλ/µ,α, and consider its parts equal
to i or i + 1. Some columns of T have no such parts, and some have one part of size i
and another of size i + 1. Ignore these columns.

The remaining parts equal to i or i + 1 occur once in each column and consist of rows
with a certain number r of i’s followed by a certain number s of (i + 1)’s. Then in each
such row, convert the r i’s and s (i + 1)’s into s i’s and r (i + 1)’s. Call the resulting
SSYT φ(T ). It’s easy to see that φ(T ) indeed lies in the codomain, and furthermore
that φ is a bijection.

§38 Wednesday, November 30

§38.1 Schur functions II

Let’s keep going with Schur functions.

Definition 38.1 — For λ ∈ Par(n) and α a weak composition of n, let Kλα denote
the number of SSYT of shape λ and type α.

Note that by Definition 37.2, we immediately have that

sλ =∑
α

Kλαx
α.

And by our previosu result, sλ is always symmetric. So we in fact have that

sλ = ∑
µ∈Par(n)

Kλµmµ.

More generally, define Kλ/ν,α as the number of SSYT of shape λ/ν and type α. Then if
∣λ/ν∣ = n, we have that

Sλ/ν = ∑
µ∈Par(n)

Kλ/ν,µmµ.

Generally speaking there’s no simple formula for Kλ/ν,µ, but there is a nice special case,

in which ν = φ and µ = (1n). For this special case, let’s write fλ ∶=Kλ,(1n). T

Then, by definition, fλ equals the total number of ways in which to insert the numbers
1,2, . . . , n into λ, each appearing once and so that numbers increase across rows and
down columns. Such an array is called a standard Young tableau of shape λ.

Example 38.2

If λ = (3,2), then the standard Young tableau of shape λ are

123 124 125 134 135

45 35 34 25 24

So f (3,2) = 5.
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Remark 38.3. There’s a nice formula for fλ known as the hook length formula. We won’t
discuss it here.

Theorem 38.4

For λ ∈ Par(n), fλ counts the number of objects listed in the bullets below.

(a) Chains of partitions, i.e., sequences ∅ = λ0, λ1, . . . , λn = λ where λi is obtained
from λi−1 by adding a single square.

(b) Ballot sequences: this is the number of ways in which n voters can vote
sequentially in an election for candidates A1,A2, . . . so that AI receives λi
votes for all i, and so that Ai is never trailing Ai+1 in the voting.

§39 Friday, December 2

§39.1 Schur functions III

It turns out that there’s a combinatorial object equivalent to an SSYT: a Gelfand-
Tstelin pattern. It’s a triangular array G of non-negative integers such that the rows
are weakly increasing and every value lies inbetween its two neighbors above it. Given
such a G, one can create an SSYT T = T (G) by letting λi be the ith row of G in reverse
order. The insert n − i + 1 into the squares of the skew shape λi/λi+1.

Proposition 39.1

The Schur functions sλ with ∣λ∣ = n form a basis of Λn.

Theorem 39.2

Let sλ be a Schur function with ∣λ∣ = n. Then Sλ = ∑ρ∶∣ρ∣=n 1
zρ
xλρpρ. Here, zρ =

∏i i
mi(ρ)mi(ρ)!, where mi(ρ) is the number of parts of ρ of size i. We’re also using

Pρ to denote the power sum symmetric function corresponding to ρ, and xλρ to denote
the irreducible character of Sn of type λ evaluated on a conjugacy class of type ρ.

§39.2 Walks on graphs

Let G be an undirected graph with p vertices. The adjacency matrix of G, A(G), is
the p × p matrix whose i, j entry is the number of edges from i to j. We’ll allow for G to
have self-loops.

Theorem 39.3

For any integer ` ≥ 1, the i, j entry of A(G)` is the number of length ` walks from i
to j.

Proof. By induction on `.
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Recall from linear algebra that since A(G) is symmetric, its eigenvalues are real.
Furthermore, A(G) has an orthonormal basis of real eignevectors u1, . . . , up with corre-
sponding eigenvalues λ1, . . . , λp. Now let U be the matrix with columns u1, . . . , up. Then
U is an orthogonal matrix, meaning UT = U−1. Also by linear algebra, we have that
U−1 ⋅A(G) ⋅U = diag(λ1, . . . , λp).

Corollary 39.4

Fix vertices i, j in the graph G, and let λ1, . . . , λp be the eigenvalues of A(G). Then
there exist real numbers c1, . . . , cp so that for all ` ≥ 1,

A(G)`i,j = c1λ`1 + . . . + cpλ`p.
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