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1. LECTURE 1 – FEBRUARY 6, 2019

Homework is optional, and we’ll be using the book Category Theory in Context by Emily
Riehl. Emily was a grad student here a couple years ago and the book constitutes lectures
from a course she taught about category theory.

Definition 1.1. A category C consists of a collection of objects Ob(C) and for each X, Y ∈
Ob(C) a collection of morphisms Hom(X, Y). If f ∈ Hom(X, Y), X is said to be its do-
main and Y its codomain. Each object X ∈ Ob(C) has a distinguished identity morphism
1X ∈ Hom(X, X). Additionally, for each X, Y, Z ∈ Ob(C) there exists ◦ : Hom(X, Y) ×
Hom(Y, Z)→ Hom(X, Z). This data satisfies

• 1Y ◦ f = f = f ◦ 1X
• ( f ◦ g) ◦ h = f ◦ (g ◦ h)

One observation is that each object is characterized by its identity morphism. What
character theory says is that the morphisms are more important than the objects.
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Example 1.2. (1) Set is the category whose objects are sets and morphisms are
functions between sets. Implicitly, we also need to define ( f ◦ g)x = f (g(x)).

(2) Top is the category whose objects are topological spaces and morphisms are
continuous maps. Composition is just composition of functions.

(3) Grp is the category whose objects are groups and whose morphisms are
group homomorphisms. Historically, this example is the reason why the
word ’morphism’ appears in the definition of category.

(4) Man is the category whose objects are smooth manifolds and morphisms are
smooth maps.

(5) ModR is the category of R-modules with morphisms module homomor-
phisms. When R is a field, this category is VectK, and when R is Z, it’s the
full subcategory Ab of Grp.

All of these categories are concrete because, informally speaking, their objects are sets
with extra structure and their morphisms are just maps of sets which happen to satisfy
some properties. They are contrasted with abstract categories, which do not consist of
sets with extra structure.

Example 1.3. A group G can be witnessed as the one-object category BG whose
morphisms are elements of G with composition rule simply the group operation.

The point of these examples is that you can make a category out of just about anything,
and that morphisms need not be functions.

Example 1.4. A poset can be turned into a category whose objects are the elements
of the set and where Hom(X, Y) = ∗ if X < Y and it’s empty otherwise. We take
∗ ◦ ∗ = ∗, and it associates vacuously.

A set S can be turned into a category where the objects are elements of S and the
only morphisms are the identity. There’s no need to define composition.

”A poset is a thing where you got stuff.” - Danny.

Definition 1.5. A category is small if its morphisms form a set.

Definition 1.6. A category is locally small if Hom(X, Y) is a set ∀X, Y ∈ Ob(C).

In everyday math, we say that two objects should be considered equivalent if they ad-
mit an isomorphism between each other. Category theory equips us with more general
language to describe isomorphisms.

Definition 1.7. A morphism f : X → Y is an isomorphism if there exists a map g : Y → X
such that f ◦ g = 1Y and g ◦ f = 1X.

This is a beautiful definition. When there exists an isomorphism between X and Y, we
write X ∼= Y.
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Some morphisms have special names: morphisms whose domain and codomain coin-
cide are called endomorphisms, and endomorphisms which are isomorphisms are called
automorphisms.

Example 1.8. Isomorphisms in Top are homeomorphisms. In Man, they’re diffeo-
morphisms.

Definition 1.9. A groupoid is a category in which every morphism is an isomorphism.

Definition 1.10. A subcategory of C is a category whose objects are a subcollection of those
of C and whose morphisms are a subcollection of the morphisms of C.

Here’s a fun fact: any category C contains a maximal groupoid whose objects are all the
objects in C and whose morphisms are all the isomorphisms in C.

Exercise 1.1 Show that a morphisms can have at most one inverse morphism.

Proof. Not surprisingly, this is the proof that inverses are unique in a monoid. After all,
Hom sets are monoids.

f−1 = f−11

= f−1( f f−1
∗ )

= ( f−1 f ) f−1
∗

= 1 f−1
∗

= f−1
∗

�

Exercise 1.2 Say f : X → Y is a morphism and there exist a pair of morphisms g, h : Y → X
such that g f = 1X and f h = 1Y. Show that g = h and f is an isomorphism.

Proof. It’s the same trick as the previous exercise.

g = g1

= g( f h)
= (g f )h
= 1h
= h

It follows immediately that f is an isomorphism. What we’ve proven is that when left-
and right-inverses exist, they coincide and in fact form a two-side inverse. This exercise,
instantiated in the category Set, appears frequently in introductory math classes. �

Tonight’s homework is to read the exercises at the end of Chapter 1 in Emily’s book.
The goal is to learn about the Slice category.
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2. LECTURE 2 – FEBRUARY 8, 2019

Today we’ll talk about the duality principle. Given some category, imagine an opposite
category in which the objects are preserved by the morphisms’ domains and codomains
are reversed. Intuitively, dots stay the same and arrows are reversed.

Definition 2.1. For C a category, Cop is the opposite category of C where Ob(Cop) = Ob(C)
and f op ∈ HomCop(X, Y) ⇐⇒ f ∈ HomC(X, Y). Identities get associated to identities,
and gop ◦ f op := ( f ◦ g)op.

It turns out that Cop defines a category if and only if C is a category. Additionally, C and
Cop contain the exact same information. In real life, it sometimes turns out that it’s easier
to prove a claim in Cop than in C.

Example 2.2. Last time we learned how to construct categories from posets. The
opposite of these categories are those in which arrows point from greater elements
to lesser elements.

Example 2.3. Recall that BG is the one-object category created from the data of a
group. In BG, composition corresponds to left multiplication, while in BGop com-
position corresponds to left multiplication. In fact, for Gop the opposite group of G,
(BG)op is B(Gop).

Notice that a theorem which shows that something holds for all categories C has shown
that something holds for all Cop as well (since the Cop are just categories). Translating the
statement from Cop to one in C, you get something slightly different (for free!). In this way,
every theorem has a dual theorem.

Proposition 2.4. The following are equivalent:
(1) f : X → Y is an isomorphism in C.
(2) For all objects c ∈ C, f induces a bijection f∗ : Hom(C, X)→ Hom(C, Y).
(3) For all objects c ∈ C, f induces a bijection f ∗ : Hom(Y, C)→ Hom(X, C).

Proof. We’ll show (i) ⇐⇒ (ii) and use duality to show (i) ⇐⇒ (iii). First sup-
pose f is an isomorphism, with inverse g : Y → X. Then there’s another induced map
g∗ : Hom(c, Y) → Hom(c, X). f∗ ◦ g∗ and g∗ ◦ f∗ are the identity on Hom(C, X) and
Hom(C, Y), so we have a bijection. So (i) =⇒ (ii).

Now say f∗ is a bijection Hom(c, X) → Hom(c, Y) for any c ∈ Ob(C). Taking c = Y,
the surjectivity of this map means that 1Y ∈ Hom(Y, Y) gets hit by some g ∈ Hom(Y, X).
This g satisfies f ◦ g = 1Y, so we have a right-inverse. Now take c = X. f∗ sends g ◦ f to
g ◦ f ◦ g = f . But it also sends 1X to f . Since it’s an injection, g ◦ f = 1X. So g is a true
inverse, and (ii) =⇒ (i).

Now we use duality: the equivalence between (i) and (ii) holds for any categories. In
particular, it holds for Cop. f op : y→ x is an isomorphism in Cop, so f op

∗ : HomCop(c, Y)→
HomCop(c, X) is a bijection. This gives us what we want.

�
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So all isomorphisms can be detected at the level of bijections between Hom sets. Tech-
nically we assumed that our categories were locally small, but an analogous statements
occurs for general categories, after some fussing around with classes.

Definition 2.5. Let f : X → Y be a morphism.
(1) f is a monomorphism if f h = f k =⇒ h = k for any h, k ∈ Hom(−, X).
(2) f is an epimorphism if h f = kh =⇒ h = k for any h, k ∈ Hom(X,−).

These definitions are dual in the sense that monomorphisms of C are epimorphisms of
Cop and vice versa.

Example 2.6. In Set, monomorphisms are surjections and epimorphisms are injec-
tions.

Equivalently, monomorphisms induce injections on Hom sets under post-composition
and epimorphisms under pre-composition.

Example 2.7. In the setup X s−→ Y r−→ X, s is often called a section and r a retraction.
Sections are always monomorphisms and retractions are always epimorphisms.
This is not too hard to see when considering the action on Hom sets. These kinds
of mono/epimorphisms are sometimes called split mono/epimorphisms (i.e. when
they have one-sided inverses).

It’s pretty clear that isomorphisms are both monomorphisms and epimorphisms. Is the
converse true? The answer is no. Consider the inclusion Z→ Q in the category Ring. It’s
a monomorphism because it’s an injection. It’s an epimorphism because any map Q→W
is determined by where Z ⊂ Q gets sent. But it’s not an isomorphism because Z doesn’t
have enough inverses to receive an injection from Q.

Proposition 2.8. Monomorphisms compose. On the other hand, if g f is a monomorphism then f
is a monomorphism (but we can’t say anything about g).

The dual statement to this is that epimorphisms compose and that if g f is an epimor-
phism, g is an epimorphism.

Exercises: In Emily’s book, 1.2(ii), 1.2(iii), and 1.2(vi).

3. LECTURE 3 – FEBRUARY 13, 2019

Here’s a slogan for this class: ”Any mathematical object should be considered with
its structure-preserving morphisms.” And one mathematical object we’ve encountered is
that of the object - so what should morphisms between categories look like?

Definition 3.1. A functor between categories F : C → D consists of a map
• F : Ob C → ObD
• F : Hom(c1, c2)→ Hom(d3), d4)

And these assignments satisfy the follow functoriality axioms:
5



• F(1c) = 1F(c)
• F( f ◦ g) = F( f ) ◦ F(g)

Example 3.2. The forgetful functor Grp → Set sends a group to its underlying
set and group homomorphisms to the maps of sets which define them. Similarly,
there’s a forgetful functor Top→ Set.

There can also be intermediate forgetful functors which forget some, but not all, of
the structure in a category. For instance, there’s a forgetful functor ModR → Ab
which forgets about scaling (the map R⊗M→ M). There’s also a forgetful functor
from Ring→ Ab which forgets about the operation of multiplication. It shouldn’t
be much of a surprise that none of these functors inject on objects.

Example 3.3. An extremely important functor in algebraic topology sends Top to
hTop. It does nothing on objects and sends morphisms to their homotopy classes.
Other functors in algebraic topology send Top∗ to Grp, like πi, homology, and coho-
mology. One of the first things you learn in algebraic topology is that these functors
are homotopy invariant. This is witnessed in the fact that these maps factor through
hTop∗.

Example 3.4. A functor that is in some ways ’opposite’ to the forgetful functor is the
free functor, which sends Set to Group. A set gets sent to the group consisting of
finite words with letters in that set. This quality of being opposite will be made more
formal when we get to adjoints - the result is that the free and forgetful functors form
an adjoint pair.

Theorem 3.5 (Brouwer’s Fixed Point). Any continuous map D2 → D2 has a fixed point.

Proof. Suppose not. Then one can construct a continuous map r : D2 → ∂D2 that sends x
to to the point on the boundary which the ray with head f (x) going through x hits. This
map is continuous, and it acts as the identity on ∂D2, since we’re looking at a ray which
hits x. So there are maps:

S1 i−→ D2 r−→ S1

Note that r ◦ i = 1S1 . Moving to groups via π1, and using the fact that pi1 commutes with
composition, there are maps

π1(S1)→ π1(D2)→ π1(S1)

whose composition is the identity. But D2 has trivial fundamental group and S1 doesn’t,
producing contradiction. �

Definition 3.6. Covariant functors send Hom(c1, c2) to Hom(F(c1), F(c2)). Contravariant
functors send Hom(c1, c2) to Hom(F(c2), F(c1)).
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A contravariant functor is just a covariant functor out of Cop.

Example 3.7. There’s a dual functor in linear algebra (−)∗ : Vectop
k → Vectk,

V 7→ V∗ = Hom(V, K).

There’s also a functor CRingop → Top sending R to Spec(R), which consists of
prime ideals under the Zariski topology, in which closed subsets are all the prime
ideals containing a certain ideal. It’s contravariant because of a result in commuta-
tive algebra guaranteeing that pre-images of prime ideals are prime ideals, though
the images may not be.

Proposition 3.8. Functors preserve isomorphisms.

Proof.

F( f )F( f−1) = F( f ◦ f−1)

= F(1)
= 1

and likewise in the other direction. �

Example 3.9. Recall that associated to a group G we have the single object category
BG. What does a functor BG → C look like? Functors preserve automorphisms, so
BG gets sent to a single object in C and a collection of automorphisms on that object.
So a functor BG → C is equivalent to a G-object in C (i.e. an object with a G-action).

When C=Set, the data of a functor is a G-set. When C = Vectk, the data of a functor
is a representation. And when C = Top, it’s a G-space.

Though we just learned that functors preserve isomorphisms, they do not in general
preserve monomorphisms and epimorphisms. But they do preserve split monomorphisms
and epimorphisms (i.e. one-sided inverses).

Definition 3.10. For C a locally small category, there are two functors from C to Set. One is
covariant, and is defined (−) 7→ Hom(c,−) for fixed c. Another, contravariant, is defined
(−) 7→ Hom(,c).

Definition 3.11. Given categories C,D, their product category C × D is a category whose
objects are pairs (c, d) and whose morphisms are pairs of appropriate morphisms in each
’coordinate’. Bifunctors are functors out of product categories.

4. LECTURE 4 – FEBRUARY 15, 2019

Last time we learned that a functor is a map between categories.

Definition 4.1. Cat is the the category whose objects are small categories. It’s not small,
but it is locally small.
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Subcategories of Cat include Set, Grp, the category of monoids, and the category of
groupoids.

Definition 4.2. CAT is the category whose objects are locally small categories. It’s not
even locally small.

As you may expect, there’s an inclusion functor Cat ↪−→ CAT.

Definition 4.3. An isomorphism of categories F : C → D is a functor which admits an
inverse G : D → C such that GF = 1C and FG = 1D.

Example 4.4. (−)op : CAT→ CAT is an automorphism of CAT.

Note that for R a ring, Rop consists of the asme underlying elements with opposite
multiplication. It follows that any left R-module is equivalent to a right R-module, and
ModR

∼= Rop
Mod.

Though we’ve presented a few examples, this notion of isomorphism is almost always
too restrictive in practice. Intuitively, what we’ve said is that two objects in a category
are equivalent if they’re outright equal, but we’d like to say they’re equivalent if they’re
isomorphic. Historically, the development of category theory had somewhat backward
motivations, in that people only cared about categories insofar as they cared about natural
transformations.

Example 4.5. Take V to be a finite dimensiona lvector space over K, and
V∗ = Hom(V, K). We’ve seen in linear algebra that V ∼= V∗. To see why, we
select a basis for V: e1, . . . , en. Now take e∗1 to be the linear functional sending e1 to 1
and everything else to 0. The e∗i are then a basis for V∗, and the isomorphisms from
V to V∗ sends ej to e∗j .

Now let’s look at (V∗)∗ := Hom(V∗, K). We already know that (V∗)∗ ∼= V∗ ∼=
V, but there’s a choice-free way to exhibit the long isomorphism from V to (V∗)∗.
Consider the map sending v to evv : f 7→ f (v). It’s an isomorphism. The point of
this exercise is that this isomorphism is, if only informally, quite natural. The first
isomorphism, from V to V∗, forced us to make a choice and get our hands dirty.

”Not natural means it’s not natural.” - Danny.

Definition 4.6. Let F, G : C → D be functors. A natural transformation α : F → G consists
of a morphism αc : Fc → Gc for each c ∈ C, called the component of the natural transfor-
mation, such that αc′ ◦ F f = G f ◦ αc.

Fc Gc

Fc′ Gc′

αc

F f G f
αc′
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Definition 4.7. A natural isomorphism is a natural transformation whose components are
all isomorphisms.

Example 4.8. Let’s think back to our evaluation map ev : V → V∗∗ that sends vectors
in V to the map sending an element of V∗ to its output on v. We claim that it’s a
natural transformation between the identity on Vectk and the double dual on Vectk.
This amounts to showing that the following diagram commutes:

V V∗∗

W W∗∗

ev

φ φ∗∗

ev

To see why there’s couldn’t be a natural transformation between the identity and
(−)∗, note that the (−)∗ is contravariant.

People usually end up saying that functors are natural if they admit natural transfor-
mations with the identity.

Example 4.9. We’ve seen that a functor BG → C is an object in C with a G-action. So
a map from two functors is a G-equivariant map between objects in C. As expected,
a commutative diagram:

X Y

X Y

g

α

g

α

”Do you like this? Do you like it as much as I do?” - Danny.

Exercises 1.4(i), 1.4(ii), 1.4(iv)

5. LECTURE 5 – FEBRUARY 20, 2019

“The gloves are coming off.” - Danny
Today we’re going to talk about equivalence of categories. We’ve spoken briefly about

the notion of homotopy in algebraic homotopy - informally, a homotopy between maps
f , g : X → Y on topological spaces corresponds to the statement that the maps can be
continuously deformed into each other. Formally, a homotopy is a continuous map h :
X× [0, 1]→ Y with X× {0} = f and X× {1} = g.

This definition looks somewhat similar to what we saw when considering natural trans-
formations, in that you may be tempted to think of a natural transformation as a homo-
topy between functors - one important difference is that the property of admitting a ho-
motopy is symmetric while that of admitting a natural transformation is not. Natural
isomorphisms are in this sense better analogs for homotopy for functors, as they admit
natural transformations in the opposite direction.
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Today it will be useful to consider the category 1 of one object 0 and the category 2 with
objects 0, 1 and one non-identity morphisms from 0 to 1.

Proposition 5.1. Suppose α is a natural transformation between F, G : C → D. Then α corre-
sponds bijectively to a functor C × 2→ D.

C C × 2 C

D

i0

F
H

i1

G

Recall that a natural isomorphism is a natural transformation with an inverse natural
transformations. Now we’ll look at the category I, which is the category 2 with a mor-
phism from 1 to 0. We have a similar proposition.

Proposition 5.2. The data of a natural isomorphism between F, G : C → D is equivalent to a
functor H with

C C × I C

D

i0

F
H

i1

G

Recall that categories are isomorphic if they admit functors which compose to the iden-
tity in each direction, and that this is really too strong a property for us to be interested in.
Now we’ll look at an alternative property.

Definition 5.3. Categories C and D are equivalent if there exist functors F : C → D and
G : D → C such that GF ∼= 1C and FG ∼= 1D.

Categories which are equivalent are written C ' D, while isomorphic categories are
written C ∼= D. As you’d expect, equivalence of categories is an equivalence relations -
the only non-trivial condition to verify is transitivity.

Example 5.4. Recall that MatK is the category whose objects are the natural numbers
and where Hom(n, m) consists of n×m matrices over K. Composition is defined by
multiplying matrices in opposite order. Vect f d

K is the category of finite-dimensional
vector spaces over K while Vectbasis

K is the category of finite-dimensional vector
spaces over K with a chosen basis.

U : Vectbasis
K → Vect f d

K forgets the basis, while C : Vect f d
K → Vectbasis

K selects a basis
for vector spaces.

K(−) : MatK → Vectbasis
K sends n to Kn with standard basis. Finally, H : Vectbasis

k →
MatK sends a vector space to its dimension.

Theorem 5.5. The above functors produce equivalences between the three categories.
10



Fortunately, there’s an easier way of proving this than checking manually that all the
appropriate compositions admit natural isomorphisms to the identity.

Definition 5.6. A functor F : C → D is full if for each x, y ∈ C, the map C(x, y) →
D(Fx, Fy) is surjective. It is faithful if this map always injects.

Notice that these are both local conditions. It’s in fact possible for a functor to surject
on objects and be fully faithful, yet fail to be an isomorphism of categories - in particular,
it could still fail to inject on objects.

Definition 5.7. A functor F : C → D is essentially surjective on objects if for each d ∈ D,
d ∼= Fc for some c ∈ C.

Theorem 5.8. A functor defines an equivalence between categories if and only if it is full, faithful,
and essentially surjective on objects1.

Definition 5.9. A faithful functor which injects on objects is an embedding.

Embeddings identify their domains as subcategories of codomains. A full embedding
identifies its domain as a full subcategory of its codomain.

6. LECTURE 6 – FEBRUARY 27, 2019

Recall that categories C,D are equivalent if F : C → D and G : C → D with GF and FG
admitting natural transformations to the identity.

We also learned about less tedious ways to detect equivalences of categories, via the
local properties of fullness and faithfulness and via the global property of essential sur-
jectiveness (i.e. surjectiveness up to isomorphism). In particular, we saw the following
theorem:

Theorem 6.1. A functor F : C → D induces an equivalence of categories if and only if it is fully
faithful and essentially surjective.

Proof. First a lemma: suppose f : a → b is a morphisms in a category and a ∼= a′, b ∼= b′
in this category. Then there’s a unique morphisms f ′ : a′ → b′ such that all the following
diagrams commute:

a a′

b b′
f

∼=
f ′

∼=

And the three other diagrams given by changing the directions of the isomorphisms be-
tween a, a′ and b, b′. The proof is to define f ′ using this diagram and then check that the
diagrams commute.

Back to the proof - suppose F induces an equivalence, meaning there’s an inverse func-
tor G : D → C so that there are natural isomorphisms GF ∼= 1C and FG ∼= 1D. To see that
F is essentially surjective, fix d ∈ D. We’d like to show that F(Gd) ∼= d, but this follows
from the fact that FG ∼= 1D.
1The backward direction requires use of the Axiom of Choice, but we won’t worry about that here.
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To show faithfulness, suppose that F f = Fg, for f , g ∈ Hom(c, c′). The idea is to show
that f and g both satisfy the diagrams from our lemma, and it’ll follow that they must be
the same. Since GF f = GFg, and 1C ∼= GF, we have

c GFc

c′ GFc′

f or g

ηc

GF f
ηc′

Since both f and g make this diagram commute (and the other three), by our previous
lemma they must coincide. Note that, by symmetry, this also means that G is faithful.

Now fix k ∈ Hom(Fc, Fc′). Then Gk ∈ Hom(GFc, GFc′). By our natural isomorphism,
we have the diagram:

c GFc

c′ GFc′
∃!h

ηc

GFk
ηc′

The unique existence of such an h follows again from our lemma. Now note that replacing
Gk with GFh still makes the diagram commute, because GF ∼= 1C . So Gk = GFh, and
because G is faithful, we’re done.

Now suppose that F : C → D is fully faithful and essentially surjective. First we need to
construct G : D → C - given d ∈ D, send it to one of the objects in C whose image under
F is isomorphic to d. Then we have

FGd d

FGd′ d′
∃!

εd

`

εd′

The unique map making this diagram commute is where ` : d → d′ gets sent. One
must show that G is in fact a functor (meaning it sends identities to identities and respect
composition), but it then follows immediately that FG ∼= 1D. It remains only to show that
GF ∼= 1C . This involves writing down diagrams and doing some chasing :) �

Note that this proof was not too hard given familiarity with definitions - this is a com-
mon theme in category theory. Precise definitions make lots of proofs surprisingly easy.

Definition 6.2. A category is connected if any pair of objects is connected by a zig-zag of
morphisms.

In the above definition, the category is thought of as a graph whose vertices are objects
and whose morphisms form undirected edges.

Proposition 6.3. Any connected groupoid is equivalent to the automorphism group of any of its
objects.
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Proof. There’s an inclusion of categories F from the automorphism group of an object to
the connected groupoid. F is essentially surjective because in a connected groupoid, all the
objects are isomorphic to each other. It’s also trivially fully faithful, so it’s an equivalence
of categories. �

Definition 6.4. A category C is skeletal if it contains only one object in each isomorphism
class.

Given a category C, sk(C) is the unique skeletal category that is equivalent to C. Turning
a connected groupoid into its skeleton is what we did in the previous proposition.

Notice that for skeletal categories, an equivalence of categories is an isomorphism of
categories. Additionally, C ' D ⇐⇒ sk(C) ∼= sk(D).

7. LECTURE 7 – MARCH 8, 2019

Definition 7.1. An object i ∈ C is initial if Hom(i, i = c) consists of exactly one element
for all c ∈ C.

As usual, a definition is accompanied by its dual definition.

Definition 7.2. An object t ∈ C is terminal if Hom(c, t) consists of exactly one element for
all c ∈ C.

Example 7.3. In Set, ∅ is the initial object and {pt} is the terminal object. In Top, the
initial object is the empty space and the terminal object is the space with one point.
In ModR, the initial and terminal objects are both the 0 module. In Field, there’s no
initial object or terminal object, because there are no field homomorphisms between
fields of different characteristic. In Cat, the initial object is the empty category and
the terminal object is 1, the category with one object.

We’re done with Chapter 1 and we’re ready to discuss Chapter 2, which is about the
Yoneda Lemma. First, we’ll cast the definitions of initial and terminal objects in terms of
induced functors.

Definition 7.4. An object c ∈ C
(1) is initial if the functor Hom(c,−) : C → Set is naturally isomorphic to the constant

functor ∗ : C → Set that sends all x ∈ C to the one element set.
(2) is terminal if the functor Hom(−, c) : Cop → Set is naturally isomorphic to the

functor ∗ : Cop → Set.

This demonstrates a theme of category

Definition 7.5. A functor F : C → Set is representable if there is an object c ∈ C and a nat-
ural isomorphism F ' Hom(c,−) or F ' Hom(−, c). One then says that F is represented
by c.

This is Emily’s definition of representability, but it’s often said that a natural isomor-
phism to Hom(c,−) makes F co-representable while a natural isomorphism to Hom(,c)
makes it representable.
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Definition 7.6. A representation for F is an object c ∈ C together with a choice of natural
isomorphism F ' Hom(c,−) or F ' Hom(−, c).

Universal properties say things about either Hom(X,−) or Hom(−, X).
”Do you know what Mean Girls is?” - Danny.

Example 7.7. (1) The identity functor from Set to Set is represented by the sin-
gleton 1, because Hom(1, X) ∼= X.

(2) The forgetful functor Grp→ Set is represented by Z, since Hom(Z, G) ∼= G.
(3) The forget functor Ring → Set is represented by Z[x], because a map out of

Z[x] is determined by where x goes, and it can go anywhere.
(4) The forgetful functor from ModR → Set is represented by R.
(5) The functor from Grp to Set which sends G to the set of its n-tuples is repre-

sented by the free abelian group on n generators.
(6) The functor from Ring to Set sending a ring to the collection of its units is

represented by Z[x, x−1].
(7) The functor Hom : Cat→ Set sending a category to the set of its morphisms

is represented by the category 2, which has two objects and one non-identity
morphism between them.

(8) The functor Iso : Cat → Set sending a category to the collection of its iso-
morphisms is represented by the category I which has two objects and a
non-identity morphisms in each direction (which, of course, are obligated to
be inverses).

(9) The functor Path : Top→ Set sending a topological space to the collection of
its paths is represented by [0, 1].

(10) The functor Loop : Top → Set sending a topological space to the collection
of its loops is represented by S1.

Eilenberg-MacLane space: HomhTop(X, K(A, n)) = Hn(X; A). Yoneda lemma turns nat-
ural transformations between functors into maps between the objects representing them

8. LECTURE 8 – MARCH 13, 2019

Back in the 40’s, when Eilenberg and MacLane invented category theory, a Japanese
mathematician and computer scientist called Nobuo Yoneda was visiting Paris.

MacLane wanted to meet Yoneda, who said he was short on time and needed to meet
in a train station. So they’re speaking in a caf about Yoneda’s lemma, and the train arrives
before they’ve finished speaking. Yoneda got on the train, and MacLane followed him
without a ticket - MacLane was able to learn about the Yoneda Lemma, which he loved
and then advertised.

”If you had a time machine to go back 60 years ago, you could be a pretty big shot in
category theory.”

The Yoneda Lemma is about functors from categories to sets - functors from Cop → Set
are called presheaves. We’ve already learned that functors from C → Set which can be
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witnessed as C(c,−) or C(−, c) are representable. This method of producing functors
provides an embedding of C in its functors to Set.

A natural question asks which kinds of functors are representable, and how natural
transformations from representable functors can be characterized.

Lemma 8.1 (Yoneda Lemma). For C a locally small category and F : C → Set, there exists a
natural isomorphism

Hom(Hom(c,−), F) ∼= Fc

Proof. We can construct a map Φ : Hom(Hom(c,−), F)→ Fc by sending α to αc(1c). In the
other direction, agh idk. Somehow functors are specified by where they send one thing.
Then need to check that this bijection is natural. �

Example 8.2.

(a) Take C to be the category

1→ 2→ 3→ 4→ . . .

and F : C → Set to be some functor. Fixing a k ∈ C, we’re interested in
natural transformations C(k,−) =⇒ F. Taking k = 4, we have Hom(4, x) =
∅ if x < 4 and Hom(4, x) = ∗ otherwise. A natural transformation from
Hom(4,−) to F consists of the following commutative diagram:

∅→ ∅→ ∅→ ∗ → ∗ → . . .
↓ ↓ ↓

F1 → F2 → F3 → F4 → F5 → . . .

(b) Now consider the category BG - we’ve mentioned that a functor BG → Set
is equivalent to a left G-set. A natural transformation between Hom(∗,−)
and X : BG → Set corresponds to a G-equivariant map out of G (with the
structure of a G-action). And a G-equivariant map out of G is determined by
its output on any single element.

One interesting result of the Yoneda Lemma is that it gives rise to the Yoneda embed-
ding (taking the dual, it in fact gives rise to two Yoneda embeddings). In particular, there’s
an embedding

C ↪→ SetCop

And another
Cop ↪→ SetC

It turns out that these embeddings are full and faithful. One result of this is that a natural
transformation Hom(d,−) =⇒ Hom(c,−) is equivalent to a morphism c → d. This is
sometimes presented as the statement of Yoneda’s lemma, and is its most common use.

Corollary 8.3 (Cayley’s Theorem). Any group G is isomorphic to a subgroup of a permutation
group.
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10. LECTURE 10 – MARCH 29, 2019

Last time we talked about adjoint functors. For the categories A, B, the functor G : B→
A is adjoint to F : A → B if HomB(F(a), b) ∼= HomA(a, G(b)). Note that this is a natural
isomorphism. Today, we’re going to define adjoint functors in terms of unit and counit
maps.

For adjoint functors, there are two special maps. First suppose that b = F(a), meaning
we’re considering an endomorphism on F(a). In fact, consider the identity on F(a). Since
G is adjoint to F, G sends this to a map a→ GF(a), and this map is natural in a. So we’ve
arrived at a natural transformation η : 1A → GF. Dually, there’s a natural transformation
ε : FG → 1B. η is called a unit map, while ε is a counit map.

Example 10.1. The free functor F : Set → Vectk is adjoint to the forgetful functor
U : Vectk → Set. By our previous map, there should be a unit map η : 1Set → UF
and a counit map ε : FU → 1Set. Notice that η sends an element to itself, though it
lies in a larger set (the set of the vector space with basis the original set containing
our element). On the other hand, the counit map has domain which is the free vector
space on the set of the original vector space (it’s huge). It sends ∑v∈V λvv to itself as
an evaluated sum in V.

Lemma 10.2 (Triangle Identities). This diagram commutes:

F(a) FG(F(a))

F(a)

F(ηA)

1F(a)
ηF(a) A dual

diagram holds when one replaces a with b and F with G.

Proof. Consider the transpose of ηA : A→ GF(A); it corresponds to the identity on F(A).
It may seem silly, but consider the transpose of the composition 1GF(A) ◦ ηA. First trans-
posing the identity map, and using adjoint-ness of G, F, this corresponds to the counit
map εF(A) : FGF(A) → F(A). Now applying F to the first map in our composition, we
arrive at

F(A)
F(ηA)−−−→ FGF(A)

εF(A)−−→ F(A)

Since this is the identity - as the transpose of ηA is the identity - we’ve shown that the
diagram commutes. �

It turns out that the data of these functors being adjoint is equivalent to the statement
that these unit and counit maps obey the above triangle identities. So today’s slogan is
that the unit and the counit determine the whole adjunction.

Lemma 10.3. Consider another adjunction F : A → B and G : B → A. Then by the previous
lemma, the transpose of g : F(A)→ B is g = G(g) ◦ ηA : A→ G(B).

Theorem 10.4. Given functors F : A → B, G : B → A, there’s a one-to-one correspondence
between:

(a) Adjunctions F a G
16



(b) Pairs η : 1A → GF, ε : 1B → FG of natural transformations satisfying the triangle
identities.

Proof. This formalizes our previous statement that adjunctions are totally specified by
their unit and co-unit maps. The map (a) → (b) is obvious. In the other direction, given
F a G, the adjuction HomB(F(A), B) ∼= HomA(A, G(B)) must be unique if it exists. To see
that it exists, take a map g : F(A)→ B. We send it to G(g) ◦ ηA. On the other hand, given
f : A → G(B), we send it to εB ◦ F( f ). It remains to show that these maps are inverses
and that they’re natural. The maps are natural because they are. That they’re inverses is
left as an exercise, and is not too illuminating. �

Example 10.5. Given ordered sets A, B, order-preserving functions f : A → B,
g : B→ A are adjoint iff f (a) ≤ b ⇐⇒ a ≤ g(b).

Fix X a topological space and P(X) - its power set - and C(X) - its closed subsets.
There’s an inclusion C(X)→ P(X) and a map P(X)→ C(X) which takes closures.
The closure functor is left-adjoint to the inclusion functor, because Cl(A) ⊆ B ⇐⇒
A ⊆ int(A).

11. LECTURE 11 – APRIL 3, 2019

We’ve been talking about left-adjoint pairs F a G for F : A → B and G : B → A, where
HomB(F(a), b) ∼= HomA(a, G(b)). We also learned about the unit map ηa : a → GF(a),
which is associated to the identity on F(a), and the counit map εa : FG(a)→ a associated
to the identity on G(a).

We also learned about the correspondence between adjoint functors and the (co)unit
maps. Today, we’ll obtain another characterization of adjoint functors which uses initial
objects. In particular, that F a G is equivalent to the statement that a certain category
contains an initial object.

We’ve talked about how the free and forgetful functors are adjoint on Vectk and Set.

Definition 11.1. Given functors P : A → C and Q : β → C, one can construct the
comma category (P =⇒ Q) whose objects are triples (A, h : P(A)→ Q(B), B) and whose
morphisms Hom((A, h, B), (A′, h′, B′)) are pairs of morphisms f : A → A′, g : B → B′
which make the following diagram commute:

Remark 11.2. There are ’projection’ functors from (P =⇒ Q) to β and A. This gives rise
to two functors from (P =⇒ Q) to C: projecting onto β and applying Q, and projecting
onto A and applying P. These functors admit a natural transformation, which explains
the notation (P =⇒ Q)!
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Example 11.3. Slice categories are comma categories. Recall that the slice category
A/A has objects which are morphisms in A, h : X → A, and has morphisms which
are maps f : X → X′ making the triangle commute, i.e. h′ ◦ f = h. The slice
ceategory is precisely (1A =⇒ A), where A ∈ A is though of as a functor from the
category 1 to A.

There’s also the coslice category A/A whose objects are h : A → X and whose
morphisms are f : X → X′ such that f ◦ h = h′. This category is (A =⇒ 1A).

Now we’ll consider the setup
β

1 A
G

A

, keeping in mind that our goal is to make a connection between comma categories and
adjunctions.

Lemma 11.4. Say we have an adjunction F : A → β, G : β → A. We have a unit map
ηA : A → GF(A). This is in fact an object in the previous comma category - (F(A) ∈ β, ηA) ∈
(A =⇒ G). Moreoever, this object is initial in (A =⇒ G).

Proof. We’d like to show Hom((F(A), ηA), (B, F : A → G(B))) consists of exactly one
map. This amounts to showing that there exists exactly one G(q) making the following
diagram commute:

A GF(A)

G(B)

ηA

f
G(q)

We know that a q making the diagram commute would then have q = G(q) ◦ ηA = f .
Taking transposes again, q = q = f . So q = f . �

Theorem 11.5. Given functors F : A → β, G : β → A, there’s a one-to-one correspondence
between:

(1) Adjunctions between F and G.
(2) Natural transformations η : 1A =⇒ GF with ηA : A → GF(A) is initial in (A =⇒

G) for all A ∈ A.

Proof. We’ve already shown (1) =⇒ (2). The other direction is in Leinster, and is a bit
ugly. �

Corollary 11.6. G : β → A has a left adjoint if and only if for any A ∈ A, the comma category
(A =⇒ G) has an initial object.

Proof. We’ve already shown the forward direction. In the reverse direction, we’d like to
construct F such that F a G. �
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This isn’t really coincidence - comma categories are defined so that their initial objects
contain information about adjoints.

12. LECTURE 12 – APRIL 5, 2019

The three main topics in an introductory category theory class are adjoints, representabil-
ity, and limits/colimits. You can do them in more or less any order, and we’ve decided to
first cover representability, then adjoints, and now limits/colimits. At a high leve, adjoints
deal with functors between categories, representability seeks to understand a category by
considering its functors to Set, and limits/colimits seek to understand a category by only
considering things in the category itself.

We’ll look at three kinds of limits today - the first are products. For sets X, Y, the prod-
uct X × Y is the set whose elements are pairs of elements in X and elements in Y. The
universal property of the product here is that a map W → X × Y corresponds to a map
W → X and another W → Y.

Definition 12.1. Take X, Y ∈ A. A product of X and Y is an object P ∈ A equipped with
maps p1 : P→ X and p2 : P→ Y such that [UNIVERSAL PROPERTY OF PRODUCT ]

Products are examples of limits!

Remark 12.2. Products don’t always exist. One example is a category in which X or Y
don’t receive any morphisms, meaning there can’t be projection maps pi : X×Y → X, Y.

Proposition 12.3. When products exist, they’re unique up to isomorphism.

Proof. Plug them both into the universal property. �

Example 12.4. (a) In Top, the product X × Y is the set X × Y equipped with the
product topology. As you might expect, the product topology is defined so
that this be the case. In particular, it’s designed so that A → X × Y be con-
tinuous if and only if the induced maps A→ X and A→ Y are continuous.

(b) In VectK, the product of U, V is the direct sum U ⊕ V, as it satisfies the uni-
versal property.

(c) Take the category R induced by its total order, i.e. Hom(a, b) = ∗ if a < b
and it’s empty otherwise. In this case, X×Y = min{X, Y}.

(d) Take the category N induced by the partial order of divisibility. Then a× b =
gcd(a, b)

Definition 12.5. For A a category, I a set, the product of (Xi)i∈I is an object P ∈ A
equipped with projection maps pi : P → Xi such that maps W → Xi collectively fac-
tor uniquely through P and its pi.

As a special case, when the indexing set is empty, the product is a terminal object in the
category. In fact, limits are alwasy related to terminal objects in certain categories, and
colimits are always related to initial objects in certain categories. The second example of a
limit we’ll look at today is the equalizer.
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Definition 12.6. For X, Y ∈ A and s, t : X → Y, their equalizer is an object E ∈ A equipped
with a map i : E → X such that s ◦ i = t ◦ i and such that for any f : A → X, there is a
unique f : A→ E such that i ◦ f = f .

The final setup, with i : E → X and s, t : X → Y satisfying s ◦ i = t ◦ i, is called a fork.
The equalizer is a terminal object in the category of forks.

Remark 12.7. Same as last time - equalizers don’t always exist, but when they do they’re
unique up to isomorphism.

Example 12.8. (a) In Set, the equalizer of s, t : X → Y is E = {x ∈ X|s(x) =
t(x)} equipped with the inclusion to X.

(b) In Top, the equalizer of s, t : X → Y is the equalizer from Set equipped with
the subspace topology (which makes the inclusion continuous).

(c) In Grp, the equalizer of φ, ε : G → H is ker φ.
(d) In VectK, the equalizer of s, t : V →W is ker(s− t) ⊆ V.

To get the equalizer of a collection of objects, you can take the equalizer of their product,
which is pretty cool. The last example of a limit we’ll look at today is the pullback.

Definition 12.9. Given X, Y, Z with t : Y → Z and s : X → Z, the pullback is an object
P equipped with maps P1 : P → X and P2 : P → Y such that maps f1 : A → X and
f2 : A→ Y factor uniquely through P.

When Z is a terminal object, the pullback is the product.

Example 12.10. (1) When Z is a terminal object, the pullback is the product.
(2) In Set, the pullback of s : X → Z and t : Y → Z is the set P = {(x, y) ∈

X×Y|s(x) = t(y)} equipped with projections onto X, Y.
(3) Again in Set, for f : X → Y and i : Y′ → Y, the pullback is f−1(Y′) equipped

with the inclusion to X and f : f−1(Y′)→ Y.
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